Advertisement

Interplay of \(\mathbf {R_{D^{(*)}}}\) and \(\mathbf {Z\ell \ell }\) in the Scalar Leptoquark Scenario

  • Monika Blanke
  • Marta MoscatiEmail author
  • Ulrich Nierste
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 234)

Abstract

The deviations of the experimental values of \(R_{D^{(*)}}\) from the Standard Model predictions hint at the presence of new physics in the B sector, and the existence of a scalar SU(2)-singlet leptoquark with hypercharge \(-1/3\) has often been considered as explanation of this tension. The particle modifies the coupling of the charged leptons to the Z boson, and comparison with data from electroweak precision experiments severely constrains its parameter space. We evaluate the contribution of such a leptoquark to the charged leptons Z couplings including corrections of order \(\mathscr {O}(M_Z^2/m_t^2)\) and electroweak renormalisation effects.

Notes

Acknowledgements

M.M. acknowledges the support by the DFG-funded Doctoral School KSETA.

References

  1. 1.
    G. Ricciardi, Semileptonic and leptonic \(B\) decays, circa 2016. Mod. Phys. Lett. A32(05), 1730005 (2017)Google Scholar
  2. 2.
    B. Grinstein, Determination of \(V_{ub}\) and \(V_{cb}\) from semileptonic decays. PoS HQL2016, 061 (2017)Google Scholar
  3. 3.
    F. De Fazio, Theory overview of tree-level \(B\) decays. PoS, EPS-HEP2017, 210 (2017)Google Scholar
  4. 4.
    U. Nierste, S. Trine, S. Westhoff, Charged-Higgs effects in a new B \(\rightarrow \) D tau nu differential decay distribution. Phys. Rev. D78, 015006 (2008)Google Scholar
  5. 5.
    J.F. Kamenik, F. Mescia, \(B \rightarrow D \tau \nu \) branching ratios: opportunity for lattice QCD and hadron colliders. Phys. Rev. D78, 014003 (2008)Google Scholar
  6. 6.
    S. Fajfer, J.F. Kamenik, I. Nisandzic, On the \(B \rightarrow D^* \tau \bar{\nu }_{\tau }\) sensitivity to new physics. Phys. Rev. D85, 094025 (2012)Google Scholar
  7. 7.
    R. Alonso, J. Martin Camalich, S. Westhoff, Tau properties in \(B\rightarrow D\tau \nu \) from visible final-state kinematics. Phys. Rev. D95(9), 093006 (2017)Google Scholar
  8. 8.
    J.P. Lees et al., Evidence for an excess of \(\bar{B} \rightarrow D^{(*)} \tau ^-\bar{\nu }_\tau \) decays. Phys. Rev. Lett. 109, 101802 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    J.P. Lees et al., Measurement of an excess of \(\bar{B} \rightarrow D^{(*)}\tau ^- \bar{\nu }_\tau \) decays and implications for charged Higgs bosons. Phys. Rev. D88(7), 072012 (2013)Google Scholar
  10. 10.
    M. Huschle et al., Measurement of the branching ratio of \(\bar{B} \rightarrow D^{(\ast )} \tau ^- \bar{\nu }_\tau \) relative to \(\bar{B} \rightarrow D^{(\ast )} \ell ^- \bar{\nu }_\ell \) decays with hadronic tagging at Belle. Phys. Rev. D92(7), 072014 (2015)Google Scholar
  11. 11.
    Y. Sato et al., Measurement of the branching ratio of \(\bar{B}^0 \rightarrow D^{*+} \tau ^- \bar{\nu }_{\tau }\) relative to \(\bar{B}^0 \rightarrow D^{*+} \ell ^- \bar{\nu }_{\ell }\) decays with a semileptonic tagging method. Phys. Rev. D94(7), 072007 (2016)Google Scholar
  12. 12.
    S. Hirose et al., Measurement of the \(\tau \) lepton polarization and \(R(D^*)\) in the decay \(\bar{B} \rightarrow D^* \tau ^- \bar{\nu }_\tau \). Phys. Rev. Lett. 118(21), 211801 (2017)Google Scholar
  13. 13.
    S. Hirose et al., Measurement of the \(\tau \) lepton polarization and \(R(D^*)\) in the decay \(\bar{B} \rightarrow D^* \tau ^- \bar{\nu }_\tau \) with one-prong hadronic \(\tau \) decays at Belle. Phys. Rev. D97(1), 012004 (2018)Google Scholar
  14. 14.
    R. Aaij et al., Measurement of the ratio of branching fractions \(\cal{B}(\bar{B}^0 \rightarrow D^{*+}\tau ^{-}\bar{\nu }_{\tau })/\cal{B}(\bar{B}^0 \rightarrow D^{*+}\mu ^{-}\bar{\nu }_{\mu })\). Phys. Rev. Lett. 115(11), 111803 (2015). [Erratum: Phys. Rev. Lett. 115(15), 159901 (2015)]Google Scholar
  15. 15.
    R. Aaij et al., Measurement of the ratio of the \(B^0 \rightarrow D^{*-} \tau ^+ \nu _{\tau }\) and \(B^0 \rightarrow D^{*-} \mu ^+ \nu _{\mu }\) branching fractions using three-prong \(\tau \)-lepton decays. Phys. Rev. Lett. 120(17), 171802 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    R. Aaij et al., Test of lepton flavor universality by the measurement of the \(B^0 \rightarrow D^{*-} \tau ^+ \nu _{\tau }\) branching fraction using three-prong \(\tau \) decays. Phys. Rev. D97(7), 072013 (2018)Google Scholar
  17. 17.
    D. Bigi, P. Gambino, Revisiting \(B\rightarrow D \ell \nu \). Phys. Rev. D94(9), 094008 (2016)Google Scholar
  18. 18.
    F.U. Bernlochner, Z. Ligeti, M. Papucci, D.J. Robinson, Combined analysis of semileptonic \(B\) decays to \(D\) and \(D^*\): \(R(D^{(*)})\), \(|V_{cb}|\), and new physics. Phys. Rev. D95(11), 115008 (2017). [Erratum: Phys. Rev. D97(5), 059902 (2018)]Google Scholar
  19. 19.
    D. Bigi, P. Gambino, S. Schacht, \(R(D^*)\), \(|V_{cb}|\), and the heavy quark symmetry relations between form factors. JHEP 11, 061 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    S. Jaiswal, S. Nandi, S.K. Patra, Extraction of \(|V_{cb}|\) from \(B\rightarrow D^{(*)}\ell \nu _\ell \) and the standard model predictions of \(R(D^{(*)})\). JHEP 12, 060 (2017)Google Scholar
  21. 21.
    D. Becirevic, N. Kosnik, Soft photons in semileptonic B \(\rightarrow \) D decays. Acta Phys. Polon. Supp. 3, 207–214 (2010)Google Scholar
  22. 22.
    J.A. Bailey et al., \(B\rightarrow D \ell \nu \) form factors at nonzero recoil and |V\(_{cb}\)| from 2+1-flavor lattice QCD. Phys. Rev. D92(3), 034506 (2015)Google Scholar
  23. 23.
    H. Na, C.M. Bouchard, G. Peter Lepage, C. Monahan, J. Shigemitsu, \(B \rightarrow D l \nu \) form factors at nonzero recoil and extraction of \(|V_{cb}|\). Phys. Rev. D92(5), 054510 (2015). [Erratum: Phys. Rev. D93(11), 119906 (2016)]Google Scholar
  24. 24.
    M. Blanke, A. Crivellin, S. de Boer, M. Moscati, U. Nierste, I. Niandi, T. Kitahara, Impact of polarization observables and \( B_c\rightarrow \tau \nu \) on new physics explanations of the \(b\rightarrow c \tau \nu \) anomaly (2018)Google Scholar
  25. 25.
    S. de Boer, T. Kitahara, I. Nisandzic, Soft-photon corrections to \(\bar{B} \rightarrow D \tau ^{-} \bar{\nu }_{\tau }\) relative to \(\bar{B} \rightarrow D \mu ^{-} \bar{\nu }_{\mu }\). Phys. Rev. Lett. 120(26), 261804 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    Y. Amhis et al., Averages of \(b\)-hadron, \(c\)-hadron, and \(\tau \)-lepton properties as of summer 2016. Eur. Phys. J. C77(12), 895 (2017). Updated average of \(R(D)\) and \(R(D^{\ast })\) for Summer 2018 at https://hflav-eos.web.cern.ch/hflav-eos/semi/summer18/RDRDs.html
  27. 27.
    M. Bauer, M. Neubert, Minimal leptoquark explanation for the R\(_{D^{(*)}}\), R\(_K\), and \((g-2)_g\) anomalies. Phys. Rev. Lett. 116(14), 141802 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    D. Beirevi, N. Konik, O. Sumensari, R.Z. Funchal, Palatable leptoquark scenarios for lepton flavor violation in exclusive \(b\rightarrow s\ell _1\ell _2\) modes. JHEP 11, 035 (2016)Google Scholar
  29. 29.
    Y. Cai, J. Gargalionis, M.A. Schmidt, R.R. Volkas, Reconsidering the one leptoquark solution: flavor anomalies and neutrino mass. JHEP 10, 047 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    I. Dorner, S. Fajfer, A. Greljo, J.F. Kamenik, N. Konik, Physics of leptoquarks in precision experiments and at particle colliders. Phys. Rept. 641, 1–68 (2016)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    V. Shtabovenko, R. Mertig, F. Orellana, New developments in FeynCalc 9.0. Comput. Phys. Commun. 207, 432–444 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    R. Mertig, M. Bohm, A. Denner, FEYN CALC: computer algebraic calculation of Feynman amplitudes. Comput. Phys. Commun. 64, 345–359 (1991)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    V. Shtabovenko, FeynHelpers: connecting FeynCalc to FIRE and Package-X. Comput. Phys. Commun. 218, 48–65 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    H.H. Patel, Package-X 2.0: a mathematica package for the analytic calculation of one-loop integrals. Comput. Phys. Commun. 218, 66–70 (2017)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    A. Denner, H. Eck, O. Hahn, J. Kublbeck, Feynman rules for fermion number violating interactions. Nucl. Phys. B387, 467–481 (1992)ADSCrossRefGoogle Scholar
  36. 36.
    C. Patrignani et al., Review of particle physics. Chin. Phys. C40(10), 100001 (2016)ADSGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut für KernphysikKarlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
  2. 2.Institut für Theoretische TeilchenphysikKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations