Advertisement

Majorana Dark Matter, Massless Goldstone and Neutrino Mass in a New \(B-L\) Model

  • Shivaramakrishna SingiralaEmail author
  • Rukmani Mohanta
  • Sudhanwa Patra
  • Soumya Rao
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 234)

Abstract

We present a comprehensive study of Majorana dark matter in a \(U(1)_{B-L}\) gauge extension of the standard model, where three exotic fermions with \(B-L\) charges as \(-4, -4, +5\) are added to make the model free from the triangle gauge anomalies. We compute the dark matter observables in scalar and gauge portal context and make a parameter scan consistent with the current experimental limits. A massless physical Goldstone boson plays a key role in the scalar portal relic density. Finally, we briefly discuss the neutrino mass generation at one-loop level.

Keywords

Dark matter Neutrino mass 

References

  1. 1.
    J.C. Montero, V. Pleitez, Gauging U(1) symmetries and the number of right-handed neutrinos. Phys. Lett. B 675, 6468 (2009).  https://doi.org/10.1016/j.physletb.2009.03.065ADSCrossRefGoogle Scholar
  2. 2.
    S. Singirala, et al., Singlet scalar Dark matter in \(U(1)_{B-L}\) models without right-handed neutrinos. arXiv:1704.01107
  3. 3.
    S. Singirala, et al., Majorana dark matter in new \(B-L\) model. arXiv:1710.05775
  4. 4.
    Planck Collaboration, P.A.R. Ade et al., Planck 2015 results-XIII. cosmological parameters. Astron. Astrophys. 594, A13 (2016).  https://doi.org/10.1051/0004-6361/201525830
  5. 5.
    LUX Collaboration, D.S. Akerib, et al., Results from a search for dark matter in the complete LUX exposure. Phys. Rev. Lett. 118(2), 021303 (2017).  https://doi.org/10.1103/PhysRevLett.118.021303
  6. 6.
    XENON Collaboration, E. Aprile, et al., First dark matter search results from the XENON1T experiment. Phys. Rev. Lett. 119(18), 181301 (2017).  https://doi.org/10.1103/PhysRevLett.119.181301
  7. 7.
    PandaX-II Collaboration, X. Cui, et al., Dark matter results from 54-ton-day exposure of PandaX-II experiment. Phys. Rev. Lett. 119(18), 181302 (2017).  https://doi.org/10.1103/PhysRevLett.119.181302
  8. 8.
    The ATLAS collaboration, Search for new phenomena in the dilepton final state using proton-proton collisions at \(\sqrt{s} = 13\) TeV with the ATLAS detector. ATLAS-CONF-2015-070 (2015)Google Scholar
  9. 9.
    A. Belyaev, et al., CalcHEP 3.4 for collider physics within and beyond the standard model. Comput. Phys. Commun. 184, 1729–1769 (2013).  https://doi.org/10.1016/j.cpc.2013.01.014ADSCrossRefGoogle Scholar
  10. 10.
    ALEPH and DELPHI and L3 and OPAL and LEP Electroweak Collaborations, S. Schael, et al., Electroweak measurements in electron-positron collisions at W-Boson-pair energies at LEP. Phys. Rep. 532, 119–244 (2013).  https://doi.org/10.1016/j.physrep.2013.07.004
  11. 11.
    P. Agrawal, et al., A classification of dark matter candidates with primarily spin-dependent interactions with matter. UMD-PP-10-004, RUNHETC-2010-07 (2010)Google Scholar
  12. 12.
    E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006).  https://doi.org/10.1103/PhysRevD.73.077301

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Shivaramakrishna Singirala
    • 1
    Email author
  • Rukmani Mohanta
    • 1
  • Sudhanwa Patra
    • 2
  • Soumya Rao
    • 3
  1. 1.School of PhysicsUniversity of HyderabadHyderabadIndia
  2. 2.Indian Institute of Technology Bhilai, GEC CampusRaipurIndia
  3. 3.National Centre for Nuclear ResearchWarsawPoland

Personalised recommendations