Majorana Dark Matter, Massless Goldstone and Neutrino Mass in a New \(B-L\) Model

  • Shivaramakrishna SingiralaEmail author
  • Rukmani Mohanta
  • Sudhanwa Patra
  • Soumya Rao
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 234)


We present a comprehensive study of Majorana dark matter in a \(U(1)_{B-L}\) gauge extension of the standard model, where three exotic fermions with \(B-L\) charges as \(-4, -4, +5\) are added to make the model free from the triangle gauge anomalies. We compute the dark matter observables in scalar and gauge portal context and make a parameter scan consistent with the current experimental limits. A massless physical Goldstone boson plays a key role in the scalar portal relic density. Finally, we briefly discuss the neutrino mass generation at one-loop level.


Dark matter Neutrino mass 


  1. 1.
    J.C. Montero, V. Pleitez, Gauging U(1) symmetries and the number of right-handed neutrinos. Phys. Lett. B 675, 6468 (2009). Scholar
  2. 2.
    S. Singirala, et al., Singlet scalar Dark matter in \(U(1)_{B-L}\) models without right-handed neutrinos. arXiv:1704.01107
  3. 3.
    S. Singirala, et al., Majorana dark matter in new \(B-L\) model. arXiv:1710.05775
  4. 4.
    Planck Collaboration, P.A.R. Ade et al., Planck 2015 results-XIII. cosmological parameters. Astron. Astrophys. 594, A13 (2016).
  5. 5.
    LUX Collaboration, D.S. Akerib, et al., Results from a search for dark matter in the complete LUX exposure. Phys. Rev. Lett. 118(2), 021303 (2017).
  6. 6.
    XENON Collaboration, E. Aprile, et al., First dark matter search results from the XENON1T experiment. Phys. Rev. Lett. 119(18), 181301 (2017).
  7. 7.
    PandaX-II Collaboration, X. Cui, et al., Dark matter results from 54-ton-day exposure of PandaX-II experiment. Phys. Rev. Lett. 119(18), 181302 (2017).
  8. 8.
    The ATLAS collaboration, Search for new phenomena in the dilepton final state using proton-proton collisions at \(\sqrt{s} = 13\) TeV with the ATLAS detector. ATLAS-CONF-2015-070 (2015)Google Scholar
  9. 9.
    A. Belyaev, et al., CalcHEP 3.4 for collider physics within and beyond the standard model. Comput. Phys. Commun. 184, 1729–1769 (2013). Scholar
  10. 10.
    ALEPH and DELPHI and L3 and OPAL and LEP Electroweak Collaborations, S. Schael, et al., Electroweak measurements in electron-positron collisions at W-Boson-pair energies at LEP. Phys. Rep. 532, 119–244 (2013).
  11. 11.
    P. Agrawal, et al., A classification of dark matter candidates with primarily spin-dependent interactions with matter. UMD-PP-10-004, RUNHETC-2010-07 (2010)Google Scholar
  12. 12.
    E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006).

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Shivaramakrishna Singirala
    • 1
    Email author
  • Rukmani Mohanta
    • 1
  • Sudhanwa Patra
    • 2
  • Soumya Rao
    • 3
  1. 1.School of PhysicsUniversity of HyderabadHyderabadIndia
  2. 2.Indian Institute of Technology Bhilai, GEC CampusRaipurIndia
  3. 3.National Centre for Nuclear ResearchWarsawPoland

Personalised recommendations