Holographic 3D Visualisation of Medical Scan Images

  • Javid KhanEmail author


Following decades of research and development, three-dimensional (3D) holographic visualisation and display technologies are ready to emerge. A 3D image can be described in terms of capturing the light field of a scene, which can be recreated by a surface that emits rays of light as a function of both intensity and direction. This may be realised via integral imaging or holography or a combination of these. Holographic technology relies on lasers to create diffractive interference patterns that enable encoding of amplitude and phase information within an optical medium. This is in the form of transmission or reflection holograms that act as gratings to deflect light. Suitable illumination of these patterns can form a 3D representation of an object in free space. Printed digital reflection holograms with static 3D images are now sufficiently mature for the depiction of volumetric data from computed tomography, magnetic resonance imaging or ultrasound scans. The physiology of 3D visual image perception is introduced along with tangible benefits of 3D visualisation. Image processing and computer graphics techniques for medical scans are summarised. Next-generation holographic video displays for dynamic visualisation are on the horizon, which are also being designed for medical imaging modalities. Case studies are also presented in facial forensics and surgical planning.


3D Holography Interference Diffraction Display Light field Hologram Visualisation CT MRI Medical imaging Holoxica 



This work is supported in part by European Union H2020 SME Phase 2 grant number 694328 HoloMedical3D, awarded to Holoxica Limited and EPSRC grant EP/G037523/1.


  1. 1.
    Kolb H, Nelson R, Fernandez E, Jones BW. Webvision—The organization of the retina and visual system. Accessed 13 Sep 2012.
  2. 2.
    Hoffman DM, Girshick AR, Akeley K, Banks MS. Vergence–accommodation conflicts hinder visual performance and cause visual fatigue. J Vis. 2008;8:33.1–30. Scholar
  3. 3.
    Lambooij M, Fortuin M, Heynderickx I, IJsselsteijn W. Visual discomfort and visual fatigue of stereoscopic displays: a review. J Imaging Sci Technol. 2009;53:30201. Scholar
  4. 4.
    Shibata T, Kim J, Hoffman DM, Banks MS. The zone of comfort: predicting visual discomfort with stereo displays. J Vis. 2011;11(8):11. Scholar
  5. 5.
    Khanh TQ, Bodrogi P. Illumination, color and imaging: evaluation and optimization of visual displays. Hoboken, NJ: Wiley; 2012.Google Scholar
  6. 6.
    Maxwell JC. Experiments on colour, as perceived by the eye, with remarks on colour-blindness. Earth Environ Sci Trans R Soc Edinb. 1857;21:275–98. Scholar
  7. 7.
    McIntire JP, Havig PR, Geiselman EE. Stereoscopic 3D displays and human performance: a comprehensive review. Displays. 2014;35:18–26. Scholar
  8. 8.
    Hackett M. Medical holography for basic anatomy training. In: I/ITSEC 2013.Google Scholar
  9. 9.
    The Future of Healthcare in 3D. In: HealthyComms. Accessed 13 Mar 2014.
  10. 10.
    Fraunhofer P. New opportunities for 3D technology in medicine—Research News March 2013. Accessed 27 Mar 2013.
  11. 11.
    Bove VM. Display holography’s digital second act. Proc IEEE. 2012;100:918–28. Scholar
  12. 12.
    Yaras F, Kang H, Onural L. State of the art in holographic displays: a survey. J Disp Technol. 2010;6:443–54.CrossRefGoogle Scholar
  13. 13.
    Lippmann G. Epreuves reversibles. photographies integrales. Comptes Rendus. 1908;146:446–51.Google Scholar
  14. 14.
    Jang J-S, Javidi B. Time-multiplexed integral imaging for 3D sensing and display. Opt Photonics News. 2004;15:36–43. Scholar
  15. 15.
    Dennis G. Improvements in and relating to microscopy. 1947.Google Scholar
  16. 16.
    Gabor D. A new microscopic principle. Nature. 1948;161:777–8. Scholar
  17. 17.
    Gabor D. Microscopy by reconstructed wave-fronts. Proc R Soc Lond Ser Math Phys Sci. 1949;197:454–87. Scholar
  18. 18.
    Gabor D. Microscopy by reconstructed wave fronts: II. Proc Phys Soc Sect B. 1951;64:449–69. Scholar
  19. 19.
    Light 2015 55th anniversary of the laser’s invention. In: Int. Year Light Blog. Accessed 16 Sep 2015.
  20. 20.
    Leith EN, Upatnieks J. Reconstructed wavefronts and communication theory. J Opt Soc Am. 1962;52:1123–8. Scholar
  21. 21.
    Denisyuk Y. On the reflection of optical properties of an object in a wave field of light scattered by it. Dokl Akad Nauk SSSR. 1962;144:1275–8.Google Scholar
  22. 22.
    Saxby G. Practical holography. Boca Raton, FL: CRC Press; 2004.Google Scholar
  23. 23.
    Benton SA, Bove VM. Holographic imaging. Hoboken, NJ: Wiley; 2008.CrossRefGoogle Scholar
  24. 24.
    Jurbergs D, Bruder F-K, Deuber F, et al. New recording materials for the holographic industry. Proc SPIE. 2009;7233:72330K.CrossRefGoogle Scholar
  25. 25.
    Goodman JW. Introduction to fourier optics. 3rd ed. Greenwood Village, CO: Roberts and Company Publishers; 2005.Google Scholar
  26. 26.
    Kogelnik H. Coupled wave theory for thick hologram gratings. Bell Syst Tech J. 1969;48(9):2909–47.CrossRefGoogle Scholar
  27. 27.
    Lorensen WE, Cline HE. Marching cubes: a high resolution 3D surface construction algorithm. In: Proceedings of the 14th annual conference on computer graphics and interactive techniques. New York, NY: ACM; 1987. p. 163–9.Google Scholar
  28. 28.
    Shirley P, Tuchman A. A polygonal approximation to direct scalar volume rendering. In: Proceedings of the 1990 workshop on volume visualization. New York, NY: ACM; 1990. p. 63–70.CrossRefGoogle Scholar
  29. 29.
    Levoy M. Display of surfaces from volume data. IEEE Comput Graph Appl. 1988;8:29–37. Scholar
  30. 30.
    Rengier F, Mehndiratta A, von Tengg-Kobligk H, et al. 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg. 2010;5:335–41. Scholar
  31. 31.
    Mironov V, Kasyanov V, Drake C, Markwald RR. Organ printing: promises and challenges. Regen Med. 2008;3:93–103. Scholar
  32. 32.
    Klug MA, Burnett T, Fancello A, et al. A scalable, collaborative, interactive light-field display system. SID Symp Dig Tech Pap. 2013;44:412–5. Scholar
  33. 33.
    Balogh T. The HoloVizio system. In: Woods AJ, Dodgson NA, Merritt JO, et al., editors. Proc SPIE. San Jose, CA: SPIE; 2006. p. 60550U.Google Scholar
  34. 34.
    Balogh T. Method and apparatus for displaying three-dimensional images. 1998.Google Scholar
  35. 35.
    Onural L, Yaras F, Kang H. Current research activities on holographic video displays. In: Javidi B, Son J-Y, Thomas JT, Desjardins DD, editors. Three-dimensional imaging, visualization, and display 2010 and display technologies and applications for defense, security, and avionics IV. Proc SPIE. Orlando, FL: SPIE; 2010. p. 769002–10.Google Scholar
  36. 36.
    Hong J, Kim Y, Choi H-J, et al. Three-dimensional display technologies of recent interest: principles, status, and issues [Invited]. Appl Opt. 2011;50:H87–H115. Scholar
  37. 37.
    Kress BC, Meyrueis P. Applied digital optics: from micro-optics to nanophotonics. Hoboken, NJ: Wiley; 2009.CrossRefGoogle Scholar
  38. 38.
    Voelz DG. Computational fourier optics: a matlab tutorial. Proc SPIE. Orlando, FL: SPIE; 2011.CrossRefGoogle Scholar
  39. 39.
    Poon T-C, Kim T. Engineering optics with Matlab. Singapore: World Scientific; 2006.CrossRefGoogle Scholar
  40. 40.
    Tay S, Blanche P-A, Voorakaranam R, et al. An updatable holographic three-dimensional display. Nature. 2008;451:694–8. Scholar
  41. 41.
    Blanche P-A, Bablumian A, Voorakaranam R, et al. Holographic three-dimensional telepresence using large-area photorefractive polymer. Nature. 2010;468:80–3. Scholar
  42. 42.
    Gao H, Li X, He Z, et al. 59.4: Real-time dynamic holographic display based on a liquid crystal thin film. SID Symp Dig Tech Pap. 2012;43:804–7. Scholar
  43. 43.
    Gao H, Li X, He Z, et al. Real-time holographic display based on a super fast response thin film. J Phys Conf Ser. 2013;415:012052. Scholar
  44. 44.
    St-Hilaire P. Scalable optical architectures for electronic holography. Ph.D. Thesis, Massachusetts Institute of Technology. 1994.Google Scholar
  45. 45.
    St-Hilaire P, Benton SA, Lucente ME, Hubel PM. Color images with the MIT holographic video display. Proc SPIE. San Jose, CA: SPIE; 1992. p. 73–84.Google Scholar
  46. 46.
    St-Hilaire P, Benton SA, Lucente ME, et al. Advances in holographic video. Proc SPIE. San Jose, CA: SPIE; 1993. p. 188–96.Google Scholar
  47. 47.
    Lucente ME. Optimization of hologram computation for real-time display. Proc SPIE. San Jose, CA: SPIE; 1992. p. 32–43.Google Scholar
  48. 48.
    Wetzstein G, Lanman D, Heidrich W, Raskar R. Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays. In: ACM SIGGRAPH 2011 papers. Vancouver, BC: ACM; 2011, p 95:1–95:12.Google Scholar
  49. 49.
    Smalley DE, Smithwick QYJ, Bove VM, et al. Anisotropic leaky-mode modulator for holographic video displays. Nature. 2013;498:313–7. Scholar
  50. 50.
    Stanley M, Smith MA, Smith AP, et al. 3D electronic holography display system using a 100-megapixel spatial light modulator. Proc SPIE. San Jose, CA: SPIE; 2004. p. 297–308.Google Scholar
  51. 51.
    Slinger C, Cameron C, Stanley M. Computer-generated holography as a generic display technology. Computer. 2005;38:46–53. Scholar
  52. 52.
    Schwerdtner A, Haussler R, Leister N. Large holographic displays for real-time applications. Proc SPIE. San Jose, CA: SPIE; 2008. p. 69120T.Google Scholar
  53. 53.
    Reichelt S, Leister N. Computational hologram synthesis and representation on spatial light modulators for real-time 3D holographic imaging. J Phys Conf Ser. 2013;415:012038. Scholar
  54. 54.
    Khan J, Underwood I, Greenaway A, Halonen M. A low-resolution 3D holographic volumetric display. In: Schelkens P, Ebrahimi T, Cristobal G, et al., editors. Proc SPIE. Brussels, Belgium: SPIE; 2010. p. 77231B.Google Scholar
  55. 55.
    Khan J, Can C, Greenaway A, Underwood I. A real-space interactive holographic display based on a large-aperture HOE. Proc SPIE. San Francisco: SPIE; 2013. p. 86440M.Google Scholar
  56. 56.
    Fattal D, Peng Z, Tran T, et al. A multi-directional backlight for a wide-angle, glasses-free three-dimensional display. Nature. 2013;495:348–51. Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Holoxica Ltd, CodeBase, Argyle HouseEdinburghUK

Personalised recommendations