Advertisement

Index theory and noncommutative geometry: a survey

  • Alexander GorokhovskyEmail author
  • Erik Van Erp
Chapter

Abstract

This chapter is an introductory survey of selected topics in index theory in the context of noncommutative geometry, focusing in particular on Alain Connes’ contributions. This survey has two parts. In the first part, we consider index theory in the setting of K-theory of C algebras. The second part focuses on the local index formula of A. Connes and H. Moscovici in the context of noncommutative geometry.

References

  1. 1.
    J. Aastrup, R. Nest, and E. Schrohe, A continuous field of C -algebras and the tangent groupoid for manifolds with boundary, J. Funct. Anal. 237(2006), no. 2, 482–506. MR2230347Google Scholar
  2. 2.
    M. Atiyah, R. Bott, and V. K. Patodi, On the heat equation and the index theorem, Invent. Math. 19 (1973), 279–330. MR0650828MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    M. F. Atiyah, Global theory of elliptic operators, Proc. Internat. Conf. on Functional Analysis and Related Topics (Tokyo, 1969), 1970, pp. 21–30.Google Scholar
  4. 4.
    M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes. I, Ann. of Math. (2) 86 (1967), 374–407. MR0212836Google Scholar
  5. 5.
    M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Philos. Soc. 77 (1975), 43–69. MR0397797Google Scholar
  6. 6.
    M. F. Atiyah and I. M. Singer The index of elliptic operators on compact manifolds, Bull. Amer. Math. Soc. 69 (1963), 422–433. MR0157392MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    ——, The index of elliptic operators. I, Ann. of Math. (2) 87 (1968), 484–530.Google Scholar
  8. 8.
    ——, The index of elliptic operators. III, Ann. of Math. (2) 87 (1968), 546–604.Google Scholar
  9. 9.
    ——, The index of elliptic operators. IV, Ann. of Math. (2) 93 (1971), 119–138. MR0279833Google Scholar
  10. 10.
    P. Baum and A. Connes, Chern character for discrete groups, A fête of topology 1988, pp. 163–232. MR928402CrossRefGoogle Scholar
  11. 11.
    P. Baum, A. Connes, and N. Higson, Classifying space for proper actions and K-theory of group C -algebras, C -algebras: 1943–1993 (San Antonio, TX, 1993), 1994, pp. 240–291. MR1292018Google Scholar
  12. 12.
    P. Baum and R. G. Douglas, K homology and index theory, Operator algebras and applications, Part I (Kingston, Ont., 1980), 1982, pp. 117–173.Google Scholar
  13. 13.
    P. Baum, N. Higson, and T. Schick, On the equivalence of geometric and analytic K-homology, Pure Appl. Math. Q. 3 (2007), no. 1, part 3, 1–24.Google Scholar
  14. 14.
    P. F. Baum and E. van Erp, K-homology and index theory on contact manifolds, Acta Math. 213 (2014), no. 1, 1–48. MR3261009MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    ——, K-homology and Fredholm operators I: Dirac operators, J. Geom. Phys. 134 (2018), 101–118. MR3886929Google Scholar
  16. 16.
    N. Berline, E. Getzler, and M. Vergne, Heat kernels and Dirac operators, Grundlehren Text Editions, Springer-Verlag, Berlin, 2004. Corrected reprint of the 1992 original. MR2273508Google Scholar
  17. 17.
    N. Berline and M. Vergne, A computation of the equivariant index of the Dirac operator, Bull. Soc. Math. France 113 (1985), no. 3, 305–345. MR834043MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    J.-M. Bismut, The Atiyah-Singer index theorem for families of Dirac operators: two heat equation proofs, Invent. Math. 83 (1986), no. 1, 91–151. MR813584MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    B. Blackadar, K-theory for operator algebras Second, Mathematical Sciences Research Institute Publications, vol. 5, Cambridge University Press, Cambridge, 1998.Google Scholar
  20. 20.
    P. Bressler, R. Nest, and B. Tsygan, Riemann-Roch theorems via deformation quantization. I, II, Adv. Math. 167 (2002), no. 1, 1–25, 26–73. MR1901245Google Scholar
  21. 21.
    J.-L. Brylinski and V. Nistor, Cyclic cohomology of étale groupoids, K-Theory 8 (1994), no. 4, 341–365. MR1300545MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    D. Burghelea, The cyclic homology of the group rings, Comment. Math. Helv. 60 (1985), no. 3, 354–365. MR814144MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    A. Connes, A survey of foliations and operator algebras, Operator algebras and applications, Part I (Kingston, Ont., 1980), 1982, pp. 521–628. MR679730Google Scholar
  24. 24.
    A. Connes and H. Moscovici, Transgression and the Chern character of finite-dimensional K-cycles, Comm. Math. Phys. 155 (1993), no. 1, 103–122. MR1228528MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    ——, The local index formula in noncommutative geometry, Geom. Funct. Anal. 5 (1995), no. 2, 174–243.Google Scholar
  26. 26.
    A. Connes and G. Skandalis, The longitudinal index theorem for foliations, Publ. Res. Inst. Math. Sci. 20 (1984), no. 6, 1139–1183. MR775126MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    A. Connes, Noncommutative differential geometry, Inst. Hautes Études Sci. Publ. Math. 62 (1985), 257–360. MR823176Google Scholar
  28. 28.
    ——, Noncommutative geometry, Academic Press Inc., San Diego, CA, 1994.Google Scholar
  29. 29.
    M. Crainic, Cyclic cohomology of étale groupoids: the general case, K-Theory 17 (1999), no. 4, 319–362. MR1706117Google Scholar
  30. 30.
    C. Debord and G. Skandalis, Lie groupoids, exact sequences, Connes-Thom elements, connecting maps and index maps, J. Geom. Phys. 129 (2018), 255–268. MR3789251MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    B. L. Feĭgin and B. L. Tsygan, Cyclic homology of algebras with quadratic relations, universal enveloping algebras and group algebras, K-theory arithmetic and geometry (Moscow, 1984–1986), 1987, pp. 210–239. MR923137Google Scholar
  32. 32.
    I. M. Gel fand, On elliptic equations, Russian Math. Surveys 15 (1960), no. 3, 113–123. MR0123085Google Scholar
  33. 33.
    E. Getzler, Pseudodifferential operators on supermanifolds and the Atiyah-Singer index theorem, Comm. Math. Phys. 92 (1983), no. 2, 163–178. MR728863MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    ——, A short proof of the local Atiyah-Singer index theorem, Topology 25 (1986), no. 1, 111–117. MR836727Google Scholar
  35. 35.
    E. Getzler and J. D. S. Jones, The cyclic homology of crossed product algebras, J. Reine Angew. Math. 445 (1993), 161–174. MR1244971Google Scholar
  36. 36.
    E. Getzler and A. Szenes, On the Chern character of a theta-summable Fredholm module, J. Funct. Anal. 84 (1989), no. 2, 343–357. MR1001465MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    P. B. Gilkey, Curvature and the eigenvalues of the Laplacian for elliptic complexes, Advances in Math. 10 (1973), 344–382. MR0324731MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    A. Gorokhovsky, Characters of cycles, equivariant characteristic classes and Fredholm modules, Comm. Math. Phys. 208 (1999), no. 1, 1–23. MR1729875Google Scholar
  39. 39.
    ——, Bivariant Chern character and longitudinal index, J. Funct. Anal. 237 (2006), no. 1, 105–134. MR2239260Google Scholar
  40. 40.
    A. Gorokhovsky and J. Lott, Local index theory over étale groupoids, J. Reine Angew. Math. 560 (2003), 151–198. MR1992804Google Scholar
  41. 41.
    ——, Local index theory over foliation groupoids, Adv. Math. 204 (2006), no. 2, 413–447. MR2249619Google Scholar
  42. 42.
    ——, A Hilbert bundle description of differential K-theory, Adv. Math. 328 (2018), 661–712. MR3771139Google Scholar
  43. 43.
    V. Guillemin, A new proof of Weyl’s formula on the asymptotic distribution of eigenvalues, Adv. in Math. 55 (1985), no. 2, 131–160. MR772612MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    N. Higson, A primer on KK-theory, Operator theory: operator algebras and applications, Part 1 (Durham, NH, 1988), 1990, pp. 239–283. MR1077390Google Scholar
  45. 45.
    ——, The local index formula in noncommutative geometry, Contemporary developments in algebraic K-theory, 2004, pp. 443–536. MR2175637Google Scholar
  46. 46.
    ——, The residue index theorem of Connes and Moscovici, Surveys in noncommutative geometry, 2006, pp. 71–126. MR2277669Google Scholar
  47. 47.
    ——, The tangent groupoid and the index theorem, Quanta of maths, 2010, pp. 241–256. MR2732053Google Scholar
  48. 48.
    M. Hilsum and G. Skandalis, Morphismes K-orientés d’espaces de feuilles et fonctorialité en théorie de Kasparov (d’après une conjecture d’A. Connes), Ann. Sci. École Norm. Sup. (4) 20 (1987), no. 3, 325–390.MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    A. Jaffe, A. Lesniewski, and K. Osterwalder, Quantum K-theory. I The Chern character, Comm. Math. Phys. 118 (1988), no. 1, 1–14. MR954672Google Scholar
  50. 50.
    M. Jakob, A bordism-type description of homology, Manuscripta Math. 96 (1998), no. 1, 67–80. MR1624352MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    G. G. Kasparov, Topological invariants of elliptic operators. I. K-homology, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), no. 4, 796–838. MR0488027Google Scholar
  52. 52.
    ——. Operator K-theory and its applications: elliptic operators, group representations, higher signatures, C -extensions, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983), 1984, pp. 987–1000. MR804752Google Scholar
  53. 53.
    M. Lesch, On the noncommutative residue for pseudodifferential operators with log-polyhomogeneous symbols, Ann. Global Anal. Geom. 17 (1999), no. 2, 151–187. MR1675408Google Scholar
  54. 54.
    J.-L. Loday Cyclic homology, Second, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 301, Springer-Verlag, Berlin, 1998. Appendix E by María O. Ronco, Chapter 13 by the author in collaboration with Teimuraz Pirashvili. MR1600246Google Scholar
  55. 55.
    H. P McKean Jr. and I. M. Singer, Curvature and the eigenvalues of the Laplacian, J. Differential Geometry 1 (1967), no. 1, 43–69. MR0217739Google Scholar
  56. 56.
    B. Monthubert and F. Pierrot, Indice analytique et groupoïdes de Lie, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), no. 2, 193–198. MR1467076zbMATHCrossRefGoogle Scholar
  57. 57.
    R. Nest and B. Tsygan, Algebraic index theorem, Comm. Math. Phys. 172 (1995), no. 2, 223–262. MR1350407MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    ——, Algebraic index theorem for families, Adv. Math. 113 (1995), no. 2, 151–205. MR1337107Google Scholar
  59. 59.
    ——, Formal versus analytic index theorems, Internat. Math. Res. Notices 11 (1996), 557–564. MR1405974Google Scholar
  60. 60.
    V. Nistor, Group cohomology and the cyclic cohomology of crossed products, Invent. Math. 99 (1990), no. 2, 411–424. MR1031908MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    V. Nistor, A. Weinstein, and P. Xu, Pseudodifferential operators on differential groupoids, Pacific J. Math. 189 (1999), no. 1, 117–152. MR1687747MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    D. Quillen, Superconnections and the Chern character, Topology 24 (1985), no. 1, 89–95. MR790678MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    P. C. Rouse, Compactly supported analytic indices for Lie groupoids, J. K-Theory 4 (2009), no. 2, 223–262. MR2551909Google Scholar
  64. 64.
    R. T. Seeley, Complex powers of an elliptic operator, Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966), 1967, pp. 288–307. MR0237943Google Scholar
  65. 65.
    E. van Erp, The Atiyah-Singer formula for subelliptic operators on a contact manifold, Part I, Ann. of Math. 171 (2010), 1647–1681.MathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    M. Wodzicki, Noncommutative residue. I. Fundamentals, K-theory arithmetic and geometry (Moscow, 1984–1986), 1987, pp. 320–399. MR923140Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of Colorado BoulderBoulderUSA
  2. 2.Dartmouth CollegeHanoverUSA

Personalised recommendations