Advertisement

Higher invariants in noncommutative geometry

  • Zhizhang Xie
  • Guoliang YuEmail author
Chapter

Abstract

We give a survey on higher invariants in noncommutative geometry and their applications to differential geometry and topology.

Notes

Acknowledgements

The authors wish to thank Alain Connes for numerous inspiring discussions. The author “Zhizhang Xie” is partially supported by NSF 1500823, NSF 1800737. The author “Guoliang Yu” is partially supported by NSF 1700021, NSF 1564398.

References

  1. [Al]
    P. Albin. Stratified surgery and K-theory invariants of the signature operator. https://arxiv.org/abs/1710.00934.
  2. [ALMP]
    P. Albin, É. Leichtnam, R. Mazzeo, P. Piazza. The signature package on Witt spaces. Ann. Sci. Éc. Norm. Supér. (4) 45 (2012), no. 2, 241–310.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [ALMP1]
    P. Albin, E. Leichtnam, R. Mazzeo, P. Piazza. The Novikov conjecture on Cheeger spaces. J. Noncommut. Geom. 11 (2017), no. 2, 451–506.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [AD]
    G. Arzhantseva, T. Delzant. Examples of random groups. Preprint, 2008.Google Scholar
  5. [A]
    M. Atiyah. Global theory of elliptic operators. 1970 Proc. Internat. Conf. on Functional Analysis and Related Topics (Tokyo, 1969) pp. 21–30 Univ. of Tokyo Press, Tokyo.Google Scholar
  6. [A1]
    M. Atiyah. Elliptic operators, discrete groups and von Neumann algebras. Colloque “Analyse et Topologie” en l’Honneur de Henri Cartan (Orsay, 1974), pp. 43–72. Astérisque, No. 32–33, Soc. Math. France, Paris, 1976.Google Scholar
  7. [AS]
    M. Atiyah, I. Singer. The index of elliptic operators. I. Ann. of Math. (2) 87 1968 484–530.Google Scholar
  8. [AAS]
    P. Antonini, S. Azzali, G. Skandalis. The Baum-Connes conjecture localised at the unit element of a discrete group. arXiv:1807.05892, 2018.Google Scholar
  9. [Au]
    T. AustinRational group ring elements with kernels having irrational dimension. Proc. Lond. Math. Soc. (3), 107(6):1424–1448, 2013.Google Scholar
  10. [BC]
    P. Baum, A. Connes. K-theory for discrete groups Operator algebras and applications, Vol. 1, volume 135 of London Mathematical Society, pages 1–20. Cambridge Univ. Press, Cambridge, 1988.Google Scholar
  11. [BCH]
    P. Baum, A. Connes, N. Higson. Classifying space for proper actions and K-theory of groupC -algebras. C-algebras: 1943–1993 (San Antonio, TX, 1993), 240–291, Contemp. Math., 167, Amer. Math. Soc., Providence, RI, 1994.Google Scholar
  12. [BL]
    A. Bartels, W. Lück. The Borel Conjecture for hyperbolic and CAT(0)-groups. Ann. of Math. (2) 175 (2012), no. 2, 631–689.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [BLH]
    A. Bartels, W. Lück, R. Holger. The K-theoretic Farrell-Jones conjecture for hyperbolic groups. Invent. Math. 172 (2008), no. 1, 29–70.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [BR]
    A. Bartels, D. Rosenthal. On theK-theory of groups with finite asymptotic dimension. J. Reine Angew. Math. 612 (2007), 35–57.Google Scholar
  15. [BD1]
    G. Bell, A. Dranishnikov. On asymptotic dimension of groups. Algebr. Geom. Topol. 1 (2001), 57–71 (electronic).MathSciNetzbMATHCrossRefGoogle Scholar
  16. [BD2]
    G. Bell, A. Dranishnikov. A Hurewicz-type theorem for asymptotic dimension and applications to geometric group theory. Transactions American Math. Soc. Volume 358, Number 11, 2006, 4749–4764.Google Scholar
  17. [BCV]
    M. Bekka, P. Cherix, A. Valette. Proper affine isometric actions of amenable groups. Novikov conjectures, index theorems and rigidity, Vol. 2 (Oberwolfach, 1993), 1–4, London Math. Soc. Lecture Note Ser., 227, Cambridge Univ. Press, Cambridge, 1995.Google Scholar
  18. [BBF]
    M. Bestvina, K. Bromberg, K. Fujiwara. Constructing group actions on quasi-trees and applications to mapping class groups. Publ. Math. Inst. Hautes Études Sci. 122 (2015), 1–64.Google Scholar
  19. [BGH]
    M. Bestvina, V. Guirardel, C. Horbez. Boundary amenability of Out(F N). arXiv:1705.07017, 2017.Google Scholar
  20. [BoG]
    B. Botvinnik , P. B. Gilkey. The eta invariant and metrics of positive scalar curvature. Math. Ann., 302(3):507–517, 1995.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [BG]
    N. Brown, E. Guentner. Uniform embeddings of bounded geometry spaces into reflexive Banach space. Proc. Amer. Math. Soc. 133 (2005), no. 7, 2045–2050.MathSciNetzbMATHCrossRefGoogle Scholar
  22. [B]
    U. Bunke. A K-theoretic relative index theorem and Callias-type Dirac operators. Math. Ann., 303(2):241–279, 1995.Google Scholar
  23. [BW]
    J. Block, S. Weinberger. Arithmetic manifolds of positive scalar curvature. J. Differential Geom. 52 (1999), no. 2, 375–406.MathSciNetzbMATHCrossRefGoogle Scholar
  24. [BW1]
    J. Block, S. Weinberger. Aperiodic tilings, positive scalar curvature and amenability of spaces. J. Amer. Math. Soc. 5 (1992), no. 4, 907–918.Google Scholar
  25. [CW]
    S. Cappell, S. Weinberger. A geometric interpretation of Siebenmann’s periodicity phenomenon. In Geometry and topology (Athens, Ga., 1985), volume 105 of Lecture Notes in Pure and Appl. Math., pages 47–52. Dekker, New York, 1987.Google Scholar
  26. [CG]
    G. Carlsson, B. Goldfarb. The integralK-theoretic Novikov conjecture for groups with finite asymptotic dimension. Invent. Math. 157 (2004), no. 2, 405–418.MathSciNetzbMATHCrossRefGoogle Scholar
  27. [CP]
    G. Carlsson, E. Pedersen. Controlled algebra and the Novikov conjectures forK- andL-theory. Topology 34 (1995), no. 3, 731–758.MathSciNetzbMATHCrossRefGoogle Scholar
  28. [CFY]
    S. Chang, S. Ferry, G. Yu. Bounded rigidity of manifolds and asymptotic dimension growth. J. K-Theory 1 (2008), no. 1, 129–144.Google Scholar
  29. [ChW]
    S. Chang, S. Weinberger. On invariants of Hirzebruch and Cheeger-Gromov. Geom. Topol. 7 (2003), 311–319.MathSciNetzbMATHCrossRefGoogle Scholar
  30. [Ch]
    W. Charlotte. Higher-invariants and the surgery structure set. J. Topol. 6.Google Scholar
  31. [CWXY]
    X. Chen, J. Wang, Z. Xie, Yu. Delocalized eta invariants, cyclic cohomology and higher rho invariants. arXiv:1901.02378, 2019.Google Scholar
  32. [C]
    A. Connes. Noncommutative Geometry. Academic Press, 1994.Google Scholar
  33. [C1]
    A. Connes. Cyclic cohomology and the transverse fundamental class of a foliation. Geometric methods in operator algebras (Kyoto, 1983), pages 52–144, volume 123, Pitman Res. Notes Math. Ser., 1986.Google Scholar
  34. [C2]
    A. Connes. Noncommutative differential geometry. Inst. Hautes Études Sci. Publ. Math., (62):257–360, 1985.Google Scholar
  35. [C3]
    A. Connes. On the Chern character ofθsummable Fredholm modules. Comm. Math. Phys. 139 (1991), no. 1, 171–181.MathSciNetzbMATHCrossRefGoogle Scholar
  36. [CH]
    A. Connes, N. Higson. Déformations, morphismes asymptotiques et K-théorie bivariante. (French) [Deformations, asymptotic morphisms and bivariant K-theory] C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), no. 2, 101–106.Google Scholar
  37. [CM]
    A. Connes, H. Moscovici. Cyclic cohomology, the Novikov conjecture and hyperbolic groups. Topology 29 (1990), no. 3, 345–388.MathSciNetzbMATHCrossRefGoogle Scholar
  38. [CGM]
    A. Connes, M. Gromov, H. Moscovici. Group cohomology with Lipschitz control and higher signatures. Geom. Funct. Anal. 3 (1993), no. 1, 1–78.Google Scholar
  39. [D]
    M. Davis. Groups generated by reflections and aspherical manifolds not covered by Euclidean space. Ann. of Math. (2) 117 (1983), no. 2, 293–324.Google Scholar
  40. [DG]
    R. J. Deeley, M. Goffeng. Realizing the analytic surgery group of Higson and Roe geometrically part III: higher invariants. Math. Ann., 366(3-4):1513–1559, 2016.MathSciNetzbMATHCrossRefGoogle Scholar
  41. [DFW]
    A. Dranishnikov, S. Ferry, S. Weinberger. An etale approach to the Novikov conjecture. Comm. Pure Appl. Math. 61 (2008), no. 2, 139–155.MathSciNetzbMATHCrossRefGoogle Scholar
  42. [DJ]
    A. Dranishnikov, T. Januszkiewicz. Every Coxeter group acts amenably on a compact space. Proceedings of the 1999 Topology and Dynamics Conference (Salt Lake City, UT). Topology Proc. 24 (1999), Spring, 135–141.Google Scholar
  43. [FH]
    F. T. Farrell, W. C. Hsiang. On Novikov’s conjecture for nonpositively curved manifolds. Ann. of Math. (2) 113 (1981), no. 1, 199–209.Google Scholar
  44. [FJ1]
    T. Farrell, L. Jones. A topological analogue of Mostow’s rigidity theorem. J. Amer. Math. Soc. 2 (1989), no. 2, 257–370.Google Scholar
  45. [FJ2]
    T. Farrell, L. Jones. Classical aspherical manifolds. CBMS Regional Conference Series in Mathematics, 75. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1990.Google Scholar
  46. [FJ3]
    T. Farrell, L. Jones. Topological rigidity for compact non-positively curved manifolds. Differential geometry: Riemannian geometry (Los Angeles, CA, 1990), 229–274, Proc. Sympos. Pure Math., 54, Part 3, Amer. Math. Soc., Providence, RI, 1993.Google Scholar
  47. [FJ4]
    T. Farrell, L. Jones. Rigidity for aspherical manifolds withπ 1 ⊂GLm(R). Asian J. Math. 2 (1998), no. 2, 215–262.Google Scholar
  48. [FM]
    A. T. Fomenko, A. S. Mishchenko. The index of elliptic operators overC -algebras. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 4, 831–859, 967.Google Scholar
  49. [FP]
    S. Ferry, E. Pedersen. Epsilon surgery theory. Novikov conjectures, index theorems and rigidity, Vol. 2 (Oberwolfach, 1993), 167–226, London Math. Soc. Lecture Note Ser., 227, Cambridge Univ. Press, Cambridge, 1995.Google Scholar
  50. [FS]
    D. Fisher, L. Silberman. Groups not acting on manifolds. Int. Math. Res. Not. IMRN 2008, no. 16, Art. ID rnn060, 11 pp.Google Scholar
  51. [FW1]
    S. Ferry, S. Weinberger. Curvature, tangentiality, and controlled topology. Invent. Math. 105 (1991), no. 2, 401–414.MathSciNetzbMATHCrossRefGoogle Scholar
  52. [FW2]
    S. Ferry, S. Weinberger. A coarse approach to the Novikov conjecture. Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993), 147–163, London Math. Soc. Lecture Note Ser., 226, Cambridge Univ. Press, Cambridge, 1995.zbMATHCrossRefGoogle Scholar
  53. [GWY]
    S. Gong, J. Wu, G. Yu. The Novikov conjecture, the group of volume preserving diffeomorphisms and Hilbert-Hadamard spaces. arXiv:1811.02086, 2018.Google Scholar
  54. [Gr]
    R. I. Grigorchuk. Degrees of growth of finitely generated groups and the theory of invariant means. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984), no. 5, 939–985.Google Scholar
  55. [G]
    M. Gromov. Hyperbolic groups. In Gersten, Steve M. Essays in group theory. Mathematical Sciences Research Institute Publications. 8. New York: Springer. pp. 75–263.Google Scholar
  56. [G1]
    M. Gromov. Asymptotic invariants of infinite groups. Geometric group theory, Vol. 2 (Sussex, 1991), 1–295, London Math. Soc. Lecture Note Ser., 182, Cambridge Univ. Press, Cambridge, 1993.Google Scholar
  57. [G2]
    M. Gromov. Spaces and questions. GAFA 2000 (Tel Aviv, 1999). Geom. Funct. Anal. 2000, Special Volume, Part I, 118–161.Google Scholar
  58. [G3]
    M. Gromov. Random walks in random groups. Geom. Funct. Anal. 13 (2003), no. 1, 73–146.MathSciNetzbMATHCrossRefGoogle Scholar
  59. [GL]
    M. Gromov, B. Lawson. The classification of simply connected manifolds of positive scalar curvature. Ann. of Math. (2), 111(3):423–434, 1980.Google Scholar
  60. [GL1]
    M. Gromov, B. Lawson. Positive scalar curvature and the Dirac operator on complete Riemannian manifolds. Inst. Hautes Études Sci. Publ. Math. No. 58 (1983), 83–196 (1984).Google Scholar
  61. [GMP]
    A. Gorokhovsky, H. Moriyoshi , P. Piazza. A note on the higher Atiyah-Patodi-Singer index theorem on Galois coverings. J. Noncommut. Geom., 10(1):265–306, 2016.Google Scholar
  62. [GHW]
    E. Guentner, N. Higson, S. Weinberger. The Novikov Conjecture for Linear Groups. Publ. Math. Inst. Hautes Études Sci. No. 101 (2005), 243–268.Google Scholar
  63. [GTY]
    E. Guentner, R. Tessera, G. Yu. A notion of geometric complexity and its application to topological rigidity. Invent. Math. 189 (2012), no. 2, 315–357.MathSciNetzbMATHCrossRefGoogle Scholar
  64. [GWY]
    E. Guentner, R. Willett, G. Yu. Dynamical complexity and controlled operator K-theory. Groups, Geometry and Dynamics, Vol. 7, 2 (2013) 377–402.Google Scholar
  65. [Ha]
    U. Hamenstädt. Geometry of the mapping class groups. I. Boundary amenability. Invent. Math. 175 (2009), no. 3, 545–609.MathSciNetzbMATHCrossRefGoogle Scholar
  66. [HS]
    S. Hanke, T. Schick. The strong Novikov conjecture for low degree cohomology. Geom. Dedicata 135 (2008), 119–127.MathSciNetzbMATHCrossRefGoogle Scholar
  67. [H]
    N. Higson. Bivariant K-theory and the Novikov conjecture. Geom. Funct. Anal. 10 (2000), no. 3, 563–581.MathSciNetzbMATHCrossRefGoogle Scholar
  68. [HK]
    N. Higson, G. Kasparov. E -theory and KK-theory for groups which act properly and isometrically on Hilbert space. Invent. Math. 144 (2001), no. 1, 23–74.MathSciNetzbMATHCrossRefGoogle Scholar
  69. [HR]
    N. Higson, J. Roe. Mapping surgery to analysis. I. Analytic signatures. K-Theory, 33(4):277–299, 2005.Google Scholar
  70. [HR1]
    N. Higson, J. Roe. Mapping surgery to analysis. II. Geometric signatures. K-Theory, 33(4):301–324, 2005.Google Scholar
  71. [HR2]
    N. Higson, J. Roe. Mapping surgery to analysis. III. Exact sequences. K-Theory, 33(4):325–346, 2005.Google Scholar
  72. [HR3]
    N. Higson, J. Roe. N. Higson and J. Roe. K-homology, assembly and rigidity theorems for relative eta invariants. Pure Appl. Math. Q., 6 (2, Special Issue: In honor of Michael Atiyah and Isadore Singer):555–601, 2010.Google Scholar
  73. [HLS]
    N. Higson, V. Lafforgue, G. Skandalis. Counterexamples to the Baum-Connes conjecture. Geom. Funct. Anal. 12 (2002), no. 2, 330–354.Google Scholar
  74. [HiS]
    M. Hilsum, G. Skandalis. Georges Invariance par homotopie de la signature à coefficients dans un fibré presque plat. (French) [Homotopy invariance of the signature with coefficients in an almost flat fiber bundle]. J. Reine Angew. Math. 423 (1992), 73–99.Google Scholar
  75. [J]
    L. Ji. The integral Novikov conjectures for linear groups containing torsion elements. J. Topol. 1 (2008), no. 2, 306–316.Google Scholar
  76. [JR]
    W. B. Johnson, N. L. Randrianarivony. l p (p > 2) does not coarsely embed into a Hilbert space. Proc. Amer. Math. Soc. 134 (2006), 1045–1050 (electronic).Google Scholar
  77. [KM]
    J. Kaminker, J. Miller. Homotopy invariance of the analytic index of signature operators over C -algebras. J. Operator Theory, 14(1):113–127, 1985.Google Scholar
  78. [K]
    G. Kasparov. Equivariant KK-theory and the Novikov conjecture. Invent. Math. 91 (1988), no. 1, 147–201.MathSciNetzbMATHCrossRefGoogle Scholar
  79. [K1]
    G. Kasparov. K-theory, group C -algebras, and higher signatures (conspectus). In Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993), volume 226 of London Math. Soc. Lecture Note Ser., pages 101–146. Cambridge Univ. Press, Cambridge, 1995.Google Scholar
  80. [KS]
    G. Kasparov, G. Skandalis. Groups acting properly on “bolic” spaces and the Novikov conjecture. Ann. of Math. (2) 158 (2003), no. 1, 165–206.MathSciNetzbMATHCrossRefGoogle Scholar
  81. [KiS]
    R. C. Kirby, L. C. Siebenmann. Foundational essays on topological manifolds, smoothings, and triangulations. With notes by John Milnor and Michael Atiyah. Annals of Mathematics Studies, No. 88. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1977. vii+355 pp.Google Scholar
  82. [KY]
    G. Kasparov, G. Yu. The Novikov conjecture and geometry of Banach spaces. Geometry and Topology 16 (2012), no. 3, 1859–1880.MathSciNetzbMATHCrossRefGoogle Scholar
  83. [Ki]
    Y. Kida. The mapping class group from the viewpoint of measure equivalence theory. Mem. Amer. Math. Soc. 196 (2008), no. 916.Google Scholar
  84. [L]
    V. Lafforgue. K-théorie bivariante pour les algèbres de Banach et conjecture de Baum-Connes. (French) [Bivariant K-theory for Banach algebras and the Baum-Connes conjecture] Invent. Math. 149 (2002), no. 1, 1–95.MathSciNetzbMATHCrossRefGoogle Scholar
  85. [L1]
    V. Lafforgue. La conjecture de Baum-Connes à coefficients pour les groupes hyperboliques. (French) [The Baum-Connes conjecture with coefficients for hyperbolic groups] J. Noncommut. Geom. 6 (2012), no. 1, 1–197.Google Scholar
  86. [LLP]
    E. Leichtnam, J. Lott, P. Piazza. On the homotopy invariance of higher signatures for manifolds with boundary. J. Differential Geom. 54 (2000), no. 3, 561–633.MathSciNetzbMATHCrossRefGoogle Scholar
  87. [LP]
    E. Leichtnam, P. Piazza. Rho-classes, index theory and Stolz’ positive scalar curvature sequence. J. Topol. 7 (2014), no. 4, 965–1004.Google Scholar
  88. [LP1]
    E. Leichtnam, P. Piazza. On higher eta-invariants and metrics of positive scalar curvature. K-Theory, 24(4):341–359, 2001.MathSciNetzbMATHCrossRefGoogle Scholar
  89. [LP2]
    E. Leichtnam, P. Piazza. Spectral sections and higher Atiyah-Patodi-Singer index theory on Galois coverings. Geom. Funct. Anal. 8 (1998), no. 1, 17–58.Google Scholar
  90. [LP3]
    E. Leichtnam, P. Piazza. Homotopy invariance of twisted higher signatures on manifolds with boundary. Bull. Soc. Math. France, 127(2):307–331, 1999.MathSciNetzbMATHCrossRefGoogle Scholar
  91. [Lo]
    J. Lott. Higher eta-invariants. K-Theory, 6(3):191–233, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  92. [Lo1]
    J. Lott. DelocalizedL 2-invariants. J. Funct. Anal., 169(1):1–31, 1999.Google Scholar
  93. [Ma]
    V. Mathai. The Novikov conjecture for low degree cohomology classes. Geom. Dedicata 99 (2003), 1–15.Google Scholar
  94. [MY]
    I. Mineyev, G. Yu. The Baum-Connes conjecture for hyperbolic groups. Invent. Math. 149 (2002), no. 1, 97–122.MathSciNetzbMATHCrossRefGoogle Scholar
  95. [M]
    A. S. Mishchenko. Infinite-dimensional representations of discrete groups, and higher signatures. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 81–106.Google Scholar
  96. [MN]
    M. Manor, A. Naor. Metric cotype. Ann. of Math. (2) 168 (2008), no. 1, 247–298.Google Scholar
  97. [Ni]
    A. Nica. Induction theorems for groups of homotopy manifold structures. Mem. Amer. Math. Soc., 39(267):vi+108, 1982.Google Scholar
  98. [Nis]
    V. Nistor. Group cohomology and the cyclic cohomology of crossed products. Invent. Math., 99(2):411–424, 1990.MathSciNetzbMATHCrossRefGoogle Scholar
  99. [N]
    S. P. Novikov. Algebraic construction and properties of Hermitian analogs of k-theory over rings with involution from the point of view of Hamiltonian formalism. Some applications to differential topology and to the theory of characteristic classes. Izv. Akad. Nauk SSSR, v. 34, 1970 I N2, pp. 253–288; II: N3, pp. 475–500.Google Scholar
  100. [N1]
    S. P. Novikov. Topological invariance of rational classes of Pontrjagin. (Russian) Dokl. Akad. Nauk SSSR 163 1965 298–300.Google Scholar
  101. [NY]
    P. Nowak, G. Yu. Large scale geometry. European Mathematical Society Publishing House, 2012.Google Scholar
  102. [O]
    D. Osajda. Small cancellation labellings of some infinite graphs and applications. arXiv:1406.5015, 2014.Google Scholar
  103. [OY]
    H. Oyono-Oyono, G. Yu. On quantitative operator K-theory. Ann. Inst. Fourier (Grenoble) 65 (2015), no. 2, 605–674.MathSciNetzbMATHCrossRefGoogle Scholar
  104. [PS]
    P. Piazza, T. Schick. Groups with torsion, bordism and rho invariants. Pacific J. Math., 232(2):355–378, 2007.MathSciNetzbMATHCrossRefGoogle Scholar
  105. [PS1]
    P. Piazza, T. Schick. Rho-classes, index theory and Stolz’ positive scalar curvature sequence. J. Topol. 7 (2014), no. 4, 965–1004.Google Scholar
  106. [PS2]
    P. Piazza, T. Schick. The surgery exact sequence, K-theory and the signature operator. Ann. K-Theory 1 (2016), no. 2.Google Scholar
  107. [PZ]
    P. Piazza, V. F. Zenobi. Singular spaces, groupoids and metrics of positive scalar curvature. J. Geom. Phys. 137.Google Scholar
  108. [Pi]
    M. Pimsner. KK-groups of crossed products by groups acting on trees. Invent. Math. 86 (1986), no. 3, 603–634.MathSciNetzbMATHCrossRefGoogle Scholar
  109. [PV]
    M. Pimsner, D. Voiculescu. K-groups of reduced crossed products by free groups. J. Operator Theory 8 (1982), no. 1, 131–156.Google Scholar
  110. [P]
    M. Puschnigg. The Kadison-Kaplansky conjecture for word-hyperbolic groups. Invent. math. 149 (2002), 153–194.MathSciNetzbMATHCrossRefGoogle Scholar
  111. [P1]
    M. Puschnigg. New holomorphically closed subalgebras ofC -algebras of hyperbolic groups. Geom. Funct. Anal. 20 (2010), no. 1, 243–259.Google Scholar
  112. [QR]
    Y. Qiao, J. Roe. On the localization algebra of Guoliang Yu. Forum Math. 22 (2010), no. 4, 657–665.Google Scholar
  113. [RTY]
    D. Ramras, R. Tessera, G. Yu. Finite decomposition complexity and the integral Novikov conjecture for higher algebraic K-theory. J. Reine Angew. Math. 694 (2014), 129–178.Google Scholar
  114. [Roe]
    J. Roe. Coarse cohomology and index theory on complete Riemannian manifolds. Mem. Amer. Math. Soc. 104 (1993), no. 497.Google Scholar
  115. [Roe1]
    J. Roe. Index theory, coarse geometry, and topology of manifolds. CBMS Regional Conference Series in Mathematics, 90. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1996.Google Scholar
  116. [Roe2]
    J. Roe, Hyperbolic groups have finite asymptotic dimension. Proc. Amer. Math. Soc. 133 (2005), no. 9, 2489–2490.MathSciNetCrossRefGoogle Scholar
  117. [Roe3]
    J. Roe, Positive curvature, partial vanishing theorems, and coarse indices. Proc. Edinb. Math. Soc. (2) 59 (2016), no. 1, 223–233.Google Scholar
  118. [R]
    J. Rosenberg. C -algebras, positive scalar curvature, and the Novikov conjecture. Inst. Hautes Études Sci. Publ. Math. No. 58 (1983), 197–212 (1984).Google Scholar
  119. [R1]
    J. Rosenberg. Manifolds of positive scalar curvature: a progress report. Surveys in differential geometry. Vol. XI, 259–294, Surv. Differ. Geom., 11, Int. Press, Somerville, MA, 2007.Google Scholar
  120. [R2]
    J. Rosenberg. Analytic Novikov for topologists. Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993), 338–372, London Math. Soc. Lecture Note Ser., 226, Cambridge Univ. Press, Cambridge, 1995.CrossRefGoogle Scholar
  121. [RS]
    J. Rosenberg, S. Stolz. Metrics of positive scalar curvature and connections with surgery. In Surveys on surgery theory, Vol. 2, volume 149 of Ann. of Math. Stud., pages 353–386. Princeton Univ. Press, Princeton, NJ, 2001.Google Scholar
  122. [RW]
    J. Rosenberg, S. Weinberger. Higher G-indices and applications. Ann. Sci. École Norm. Sup. (4) 21 (1988), no. 4, 479–495.MathSciNetzbMATHCrossRefGoogle Scholar
  123. [S]
    Z. Sela. Uniform embeddings of hyperbolic groups in Hilbert spaces. Israel J. Math. 80 (1992), no. 1-2, 171–181.MathSciNetzbMATHCrossRefGoogle Scholar
  124. [Serre]
    J. -P. Serre. Linear representations of finite groups. Translated from the second French edition by Leonard L. Scott. Graduate Texts in Mathematics, Vol. 42. Springer-Verlag, New York-Heidelberg, 1977.Google Scholar
  125. [SY]
    R. Schoen, S. T. YauOn the structure of manifolds with positive scalar curvature. Manuscripta Math., 28(1-3):159–183, 1979.MathSciNetzbMATHCrossRefGoogle Scholar
  126. [STY]
    G. Skandalis, J. Tu, G. Yu. The coarse Baum-Connes conjecture and groupoids. Topology 41 (2002), no. 4, 807–834.MathSciNetzbMATHCrossRefGoogle Scholar
  127. [St]
    S. Stolz. Concordance classes of positive scalar curvature metrics. Preprint.Google Scholar
  128. [Su]
    D. Sullivan. Hyperbolic geometry and homeomorphisms. Geometric topology (Proc. Georgia Topology Conf., Athens, Ga., 1977), pp. 543–555, Academic Press, New York-London, 1979.CrossRefGoogle Scholar
  129. [Wa]
    C. Wahl. The Atiyah-Patodi-Singer index theorem for Dirac operators overC -algebras. Asian J. Math., 17(2):265–319, 2013.Google Scholar
  130. [WW]
    B.-L. Wang, H. Wang. Localized index and L 2-Lefschetz fixed-point formula for orbifolds. J. Differential Geom., 102(2):285–349, 2016.MathSciNetzbMATHCrossRefGoogle Scholar
  131. [W]
    S. Weinberger. Variations on a theme of Borel. Book draft, available at http://math.uchicago.edu/~shmuel/VTBdraft.pdf.
  132. [W1]
    S. Weinberger. Aspects of the Novikov conjecture. Geometric and topological invariants of elliptic operators (Brunswick, ME, 1988), 281–297, Contemp. Math., 105, Amer. Math. Soc., Providence, RI, 1990.Google Scholar
  133. [WXY]
    S. Weinberger, Z. Xie, G. Yu. Additivity of higher rho invariants and nonrigidity of topological manifolds. To appear in Communications on Pure and Applied Mathematics.Google Scholar
  134. [WY]
    S. Weinberger, G. Yu. Finite part of operator K-theory for groups finitely embeddable into Hilbert space and the degree of nonrigidity of manifolds. Geom. Topol. 19 (2015), no. 5, 2767–2799.MathSciNetzbMATHCrossRefGoogle Scholar
  135. [WiY]
    R. Willett, G. Yu. Higher index theory. Book draft, available at https://math.hawaii.edu/~rufus/Skeleton.pdf, 2018.
  136. [WiY1]
    R. Willett, G. Yu. Higher index theory for certain expanders and Gromov monster groups, I. Adv. Math. 229 (2012), no. 3, 1380–1416.MathSciNetzbMATHCrossRefGoogle Scholar
  137. [WiY2]
    R. Willett, G. Yu. Higher index theory for certain expanders and Gromov monster groups, II. Adv. Math. 229 (2012), no. 3, 1762–1803.Google Scholar
  138. [XY]
    Z. Xie, G. Yu. Positive scalar curvature, higher rho invariants and localization algebras. Adv. Math. 262 (2014), 823–866.MathSciNetzbMATHCrossRefGoogle Scholar
  139. [XY1]
    Z. Xie, G. Yu. Higher rho invariants and the moduli space of positive scalar curvature metrics. Adv. Math. 307 (2017), 1046–1069.MathSciNetzbMATHCrossRefGoogle Scholar
  140. [XY2]
    Z. Xie, G. Yu. A relative higher index theorem, diffeomorphisms and positive scalar curvature. Adv. Math., 250: 35–73, 2014.Google Scholar
  141. [XY3]
    Z. Xie, G. Yu. Delocalized eta invariants, algebraicity, and K-theory of groupC -algebras. arXiv:1805.07617.Google Scholar
  142. [XYZ]
    Z. Xie, G. Yu, R. Zeidler. On the range of the relative higher index and the higher rho invariant for positive scalar curvature. arXiv:1712.03722.Google Scholar
  143. [Y]
    G. Yu. Localization algebras and the coarse Baum-Connes conjecture. K-Theory 11 (1997), no. 4, 307–318.MathSciNetzbMATHCrossRefGoogle Scholar
  144. [Y1]
    G. Yu. The Novikov conjecture for groups with finite asymptotic dimension. Ann. of Math. (2) 147 (1998), no. 2, 325–355.Google Scholar
  145. [Y2]
    G. Yu. The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space. Invent. Math. 139 (2000), no. 1, 201–240.MathSciNetzbMATHCrossRefGoogle Scholar
  146. [Y3]
    G. Yu. A characterization of the image of the Baum-Connes map. Quanta of maths, 649–657, Clay Math. Proc., 11, Amer. Math. Soc., Providence, RI, 2010.Google Scholar
  147. [Ze]
    R. Zeidler. Positive scalar curvature and product formulas for secondary index invariants. J. Topol. 2016.Google Scholar
  148. [Z]
    V. Zenobi. Mapping the surgery exact sequence for topological manifolds to analysis. J. Topol. Anal. 9 (2017), no. 2, 329–361.MathSciNetzbMATHCrossRefGoogle Scholar
  149. [Z1]
    V. F. Zenobi. Adiabatic groupoid and secondary invariants in K-theory. Adv. Math. 347.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsTexas A&M UniversityCollege StationUSA
  2. 2.Department of MathematicsTexas A&M UniversityCollege StationUSA
  3. 3.Shanghai Center for Mathematical SciencesShanghaiChina

Personalised recommendations