Advertisement

Quantum field theory on noncommutative spaces

  • Raimar WulkenhaarEmail author
Chapter

Abstract

This survey tries to give a rigorous definition of Euclidean quantum field theory on a fairly large class of noncommutative geometries, namely nuclear AF Fréchet algebras. After a review of historical developments and current trends we describe in detail the construction of the Φ3-model and explain its relation to the Kontsevich model. We review the current status of the construction of the Φ4-model and present in an outlook a possible definition of Schwinger functions for which the Osterwalder–Schrader axioms can be formulated.

Notes

Acknowledgements

I thank Alain Connes for the initiative to write such a survey and for constant support and encouragement through the years. I am most grateful to my long-term collaborator Harald Grosse with whom nearly all of the presented results have been achieved. After the two years 2000/2001 together in Vienna, our collaboration has been supported by the Erwin-Schrödinger-Institute, by the Max-Planck-Institute for Mathematics in the Sciences and by the Deutsche Forschungsgemeinschaft (DFG) via the coordinated programmes SFB 478 and SFB 878. Sections 8 and 9 are based on recent results obtained with Harald Grosse, Akifumi Sako, Erik Panzer and Alexander Hock. The survey was finally assembled within the Cluster of Excellence7 “Mathematics Münster”.

References

  1. ABIY02.
    G. Alexanian, A. P. Balachandran, G. Immirzi, and B. Ydri. Fuzzy CP 2. J. Geom. Phys., 42:28–53, 2002, hep-th/0103023. doi: 10.1016/S0393-0440(01)00070-5.
  2. ABK00a.
    I. Ya. Aref’eva, D. M. Belov, and A. S. Koshelev. A note on UV / IR for noncommutative complex scalar field. 2000, hep-th/0001215.
  3. ABK00b.
    I. Ya. Aref’eva, D. M. Belov, and A. S. Koshelev. Two loop diagrams in noncommutative \(\phi ^4_4\) theory. Phys. Lett., B476:431–436, 2000, hep-th/9912075. doi: 10.1016/S0370-2693(00)00169-6.
  4. AC96.
    E. Arbarello and M. Cornalba. Combinatorial and algebro-geometric cohomology classes on the moduli spaces of curves. J. Algebraic Geom., 5(4):705–749, 1996.MathSciNetzbMATHGoogle Scholar
  5. ADJ91.
    J. Ambjørn, B. Durhuus, and T. Jónsson. Three-dimensional simplicial quantum gravity and generalized matrix models. Mod. Phys. Lett., A6:1133–1146, 1991. doi: 10.1142/S0217732391001184.
  6. AGBZ01.
    L. Alvarez-Gaume, J. L. F. Barbon, and R. Zwicky. Remarks on time space noncommutative field theories. JHEP, 05:057, 2001, hep-th/0103069. doi: 10.1088/1126-6708/2001/05/057.
  7. AII+00.
    H. Aoki, N. Ishibashi, S. Iso, H. Kawai, Y. Kitazawa, and T. Tada. Noncommutative Yang-Mills in IIB matrix model. Nucl. Phys., B565:176–192, 2000, hep-th/9908141. doi: 10.1016/S0550-3213(99)00633-1.
  8. Aiz81.
    M. Aizenman. Proof of the triviality of \(\phi ^4_d\) field theory and some mean field features of Ising models for d > 4. Phys. Rev. Lett., 47:1–4, 1981. doi: 10.1103/PhysRevLett.47.1.
  9. Aks65.
    S. Ø. Aks. Proof that scattering implies production in quantum field theory. J. Math. Phys., 6:516–532, 1965. doi: 10.1063/1.1704305.
  10. Ale11.
    A. Alexandrov. Cut-and-join operator representation for Kontsevich-Witten tau-function. Mod. Phys. Lett., A26:2193–2199, 2011, 1009.4887. doi: 10.1142/S0217732311036607.
  11. AMNS99.
    J. Ambjørn, Y. M. Makeenko, J. Nishimura, and R. J. Szabo. Finite N matrix models of noncommutative gauge theory. JHEP, 11:029, 1999, hep-th/9911041. doi: 10.1088/1126-6708/1999/11/029.
  12. AR95.
    A. Abdesselam and V. Rivasseau. Trees, forests and jungles: A botanical garden for cluster expansions. In Constructive physics: Results in field theory, statistical mechanics and condensed matter physics, volume 446 of Lect. Notes Phys., pages 7–36. 1995, hep-th/9409094. doi: 10.1007/3-540-59190-7_20.
  13. ARS99.
    A. Yu. Alekseev, A. Recknagel, and V. Schomerus. Noncommutative world volume geometries: Branes on SU(2) and fuzzy spheres. JHEP, 09:023, 1999, hep-th/9908040. doi: 10.1088/1126-6708/1999/09/023.
  14. Ati88.
    M. Atiyah. Topological quantum field theories. Inst. Hautes Études Sci. Publ. Math., 68:175–186, 1988. URL http://www.numdam.org/item?id=PMIHES_1988__68__175_0.
  15. Bah03.
    D. Bahns. Unitary quantum field theory on the noncommutative Minkowski space. Fortsch. Phys., 51:658–663, 2003, hep-th/0212266. doi: 10.1002/prop.200310079.
  16. Bah10.
    D. Bahns. Schwinger functions in noncommutative quantum field theory. Annales Henri Poincaré, 11:1273–1283, 2010, 0908.4537. doi: 10.1007/s00023-010-0061-4.
  17. BDD+03.
    W. Behr, N. G. Deshpande, G. Duplancić, P. Schupp, J. Trampetić, and J. Wess. The Z → γγ, gg decays in the noncommutative standard model. Eur. Phys. J., C29:441–446, 2003, hep-ph/0202121. doi: 10.1140/epjc/s2003-01207-4.
  18. BDFP02.
    D. Bahns, S. Doplicher, K. Fredenhagen, and G. Piacitelli. On the unitarity problem in space-time noncommutative theories. Phys. Lett., B533:178–181, 2002, hep-th/0201222. doi: 10.1016/S0370-2693(02)01563-0.
  19. BDFP03.
    D. Bahns, S. Doplicher, K. Fredenhagen, and G. Piacitelli. Ultraviolet finite quantum field theory on quantum space-time. Commun. Math. Phys., 237:221–241, 2003, hep-th/0301100. doi: 10.1007/s00220-003-0857-x.
  20. Ber29.
    S. Bernstein. Sur les fonctions absolument monotones. Acta Math., 52(1):1–66, 1929. doi: 10.1007/BF02547400.
  21. Bet47.
    H. A. Bethe. The electromagnetic shift of energy levels. Phys. Rev., 72:339–341, 1947. doi: 10.1103/PhysRev.72.339.
  22. BFF+78a.
    F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and D. Sternheimer. Deformation theory and quantization. 1. Deformations of symplectic structures. Annals Phys., 111:61, 1978. doi: 10.1016/0003-4916(78)90224-5.
  23. BFF+78b.
    F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and D. Sternheimer. Deformation theory and quantization. 2. Physical applications. Annals Phys., 111:111, 1978. doi: 10.1016/0003-4916(78)90225-7.
  24. BFG+03.
    H. Bozkaya, P. Fischer, H. Grosse, M. Pitschmann, V. Putz, M. Schweda, and R. Wulkenhaar. Space-time noncommutative field theories and causality. Eur. Phys. J., C29:133–141, 2003, hep-th/0209253. doi: 10.1140/epjc/s2003-01210-9.
  25. BFV03.
    R. Brunetti, K. Fredenhagen, and R. Verch. The generally covariant locality principle: A new paradigm for local quantum field theory. Commun. Math. Phys., 237:31–68, 2003, math-ph/0112041. doi: 10.1007/s00220-003-0815-7.
  26. BG14.
    J. Ben Geloun. Renormalizable models in rank d ≥ 2 tensorial group field theory. Commun. Math. Phys., 332:117–188, 2014, 1306.1201. doi: 10.1007/s00220-014-2142-6.
  27. BGG+01.
    A. Bichl, J. Grimstrup, H. Grosse, L. Popp, M. Schweda, and R. Wulkenhaar. Renormalization of the noncommutative photon self-energy to all orders via Seiberg-Witten map. JHEP, 06:013, 2001, hep-th/0104097. doi: 10.1088/1126-6708/2001/06/013.
  28. BGK+08.
    D. N. Blaschke, F. Gieres, E. Kronberger, M. Schweda, and M. Wohlgenannt. Translation-invariant models for non-commutative gauge fields. J. Phys., A41:252002, 2008, 0804.1914. doi: 10.1088/1751-8113/41/25/252002.
  29. BGP+02.
    A. A. Bichl, J. M. Grimstrup, L. Popp, M. Schweda, and R. Wulkenhaar. Perturbative analysis of the Seiberg-Witten map. Int. J. Mod. Phys., A17:2219–2232, 2002, hep-th/0102044. doi: 10.1142/S0217751X02010649.
  30. BGR13.
    J. Ben Geloun and V. Rivasseau. A renormalizable 4-dimensional tensor field theory. Commun. Math. Phys., 318:69–109, 2013, 1111.4997. doi: 10.1007/s00220-012-1549-1.
  31. BGRR11.
    V. Bonzom, R. Gurau, A. Riello, and V. Rivasseau. Critical behavior of colored tensor models in the large N limit. Nucl. Phys., B853:174–195, 2011, 1105.3122. doi: 10.1016/j.nuclphysb.2011.07.022.
  32. BHN02.
    W. Bietenholz, F. Hofheinz, and J. Nishimura. The renormalizability of 2-D Yang-Mills theory on a noncommutative geometry. JHEP, 09:009, 2002, hep-th/0203151. doi: 10.1088/1126-6708/2002/09/009.
  33. BHN03.
    W. Bietenholz, F. Hofheinz, and J. Nishimura. Noncommutative field theories beyond perturbation theory. Fortsch. Phys., 51:745–752, 2003, hep-th/0212258. doi: 10.1002/prop.200310092.
  34. BIPZ78.
    E. Brézin, C. Itzykson, G. Parisi, and J. B. Zuber. Planar diagrams. Commun. Math. Phys., 59:35–51, 1978. doi: 10.1007/BF01614153.
  35. BK87.
    D. C. Brydges and T. Kennedy. Mayer expansions and the Hamilton-Jacobi equation. J. Statist. Phys., 48(1-2):19–49, 1987. doi: 10.1007/BF01010398.
  36. BK90.
    E. Brezin and V. A. Kazakov. Exactly Solvable Field Theories of Closed Strings. Phys. Lett., B236:144–150, 1990. doi: 10.1016/0370-2693(90)90818-Q.
  37. BKMP09.
    V. Bouchard, A. Klemm, M. Mariño, and S. Pasquetti. Remodeling the B-model. Commun. Math. Phys., 287:117–178, 2009, 0709.1453. doi: 10.1007/s00220-008-0620-4.
  38. BKR+10.
    D. N. Blaschke, E. Kronberger, A. Rofner, M. Schweda, R. I. P. Sedmik, and M. Wohlgenannt. On the problem of renormalizability in non-commutative gauge field models: A critical review. Fortsch. Phys., 58:364–372, 2010, 0908.0467. doi: 10.1002/prop.200900102.
  39. Blo15.
    S. Bloch. Feynman amplitudes in mathematics and physics. 2015, arXiv:1509.00361.
  40. BLS11.
    D. Buchholz, G. Lechner, and S. J. Summers. Warped convolutions, Rieffel deformations and the construction of quantum field theories. Commun. Math. Phys., 304:95–123, 2011, 1005.2656. doi: 10.1007/s00220-010-1137-1.
  41. BM04.
    G. Benfatto and V. Mastropietro. Ward identities and vanishing of the beta function for d = 1 interacting Fermi systems. J. Statist. Phys., 115(1–2):143–184, 2004. doi: 10.1023/B:JOSS.0000019825.37968.23.
  42. Boc32.
    S. Bochner. Vorlesungen über Fouriersche Integrale, volume 12 of Mathematik und ihre Anwendungen in Monographien und Lehrbüchern. Akademische Verlagsgesellschaft m.b.h., 1932.Google Scholar
  43. Boc55.
    S. Bochner. Harmonic analysis and the theory of probability. University of California Press, Berkeley and Los Angeles, 1955.zbMATHGoogle Scholar
  44. BP57.
    N. N. Bogoliubow and O. S. Parasiuk. Über die Multiplikation der Kausalfunktionen in der Quantentheorie der Felder. Acta Math., 97:227–266, 1957. doi: 10.1007/BF02392399.
  45. Bra72.
    O. Bratteli. Inductive limits of finite dimensional C -algebras. Trans. Amer. Math. Soc., 171:195–234, 1972. doi: 10.2307/1996380.
  46. Bro13a.
    D. Broadhurst. Multiple zeta values and modular forms in quantum field theory. In Computer algebra in quantum field theory, Texts Monogr. Symbol. Comput., pages 33–73. Springer, Vienna, 2013.Google Scholar
  47. Bro13b.
    F. Brown. Iterated integrals in quantum field theory. In Geometric and topological methods for quantum field theory, pages 188–240. Cambridge Univ. Press, Cambridge, 2013. URL http://www.ihes.fr/~brown/ColombiaNotes7.pdf.
  48. BS01.
    L. Bonora and M. Salizzoni. Renormalization of noncommutative U(N) gauge theories. Phys. Lett., B504:80–88, 2001, hep-th/0011088. doi: 10.1016/S0370-2693(01)00281-7.
  49. BS08.
    D. Buchholz and S. J. Summers. Warped convolutions: A novel tool in the construction of quantum field theories. In Quantum field theory and beyond: Essays in honor of Wolfhart Zimmermann, pages 107–121, 2008, 0806.0349. doi: 10.1142/9789812833556_0007.
  50. Bür99.
    H. Bürmann. Essai de calcul fonctionnaire aux constantes ad-libitum. Mem. Inst. Nat. Sci Arts. Sci. Math. Phys., 2:13–17, 1799.Google Scholar
  51. Car22.
    T. Carleman. Sur la résolution de certaines équations intégrales. Arkiv for Mat., Astron. och Fysik, 16:19pp, 1922.zbMATHGoogle Scholar
  52. CC97.
    A. H. Chamseddine and A. Connes. The Spectral action principle. Commun. Math. Phys., 186:731–750, 1997, hep-th/9606001. doi: 10.1007/s002200050126.
  53. CCM14.
    A. H. Chamseddine, A. Connes, and V. Mukhanov. Geometry and the Quantum: Basics. JHEP, 12:098, 2014, 1411.0977. doi: 10.1007/JHEP12(2014)098.
  54. CCM15.
    A. H. Chamseddine, A. Connes, and V. Mukhanov. Quanta of Geometry: Noncommutative Aspects. Phys. Rev. Lett., 114(9):091302, 2015, 1409.2471. doi: 10.1103/PhysRevLett.114.091302.
  55. CDS98.
    A. Connes, M. R. Douglas, and A. S. Schwarz. Noncommutative geometry and matrix theory: Compactification on tori. JHEP, 02:003, 1998, hep-th/9711162. doi: 10.1088/1126-6708/1998/02/003.
  56. CEO06.
    L. Chekhov, B. Eynard, and N. Orantin. Free energy topological expansion for the 2-matrix model. JHEP, 12:053, 2006, math-ph/0603003. doi: 10.1088/1126-6708/2006/12/053.
  57. CF00.
    A. S. Cattaneo and G. Felder. A path integral approach to the Kontsevich quantization formula. Commun. Math. Phys., 212:591–611, 2000, math/9902090. doi: 10.1007/s002200000229.
  58. CGH+96.
    R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth. On the Lambert W function. Adv. Comput. Math., 5:329–359, 1996. doi: 10.1007/BF02124750.
  59. CHMS00.
    S. Cho, R. Hinterding, J. Madore, and H. Steinacker. Finite field theory on noncommutative geometries. Int. J. Mod. Phys., D9:161–199, 2000, hep-th/9903239. doi: 10.1142/S0218271800000153.
  60. CJS+02.
    X. Calmet, B. Jurčo, P. Schupp, J. Wess, and M. Wohlgenannt. The standard model on noncommutative space-time. Eur. Phys. J., C23:363–376, 2002, hep-ph/0111115. doi: 10.1007/s100520100873.
  61. CK98.
    A. Connes and D. Kreimer. Hopf algebras, renormalization and noncommutative geometry. Commun. Math. Phys., 199:203–242, 1998, hep-th/9808042. doi: 10.1007/s002200050499.
  62. CM98.
    A. Connes and H. Moscovici. Hopf algebras, cyclic cohomology and the transverse index theorem. Comm. Math. Phys., 198(1):199–246, 1998, math/9806109. doi: 10.1007/s002200050477.
  63. CMS01.
    C.-S. Chu, J. Madore, and H. Steinacker. Scaling limits of the fuzzy sphere at one loop. JHEP, 08:038, 2001, hep-th/0106205. doi: 10.1088/1126-6708/2001/08/038.
  64. Con94.
    A. Connes. Noncommutative geometry. Academic Press, Inc., San Diego, CA, 1994.zbMATHGoogle Scholar
  65. Con95.
    A. Connes. Noncommutative geometry and reality. J. Math. Phys., 36:6194–6231, 1995. doi: 10.1063/1.531241.
  66. Con96.
    A. Connes. Gravity coupled with matter and foundation of noncommutative geometry. Commun. Math. Phys., 182:155–176, 1996, hep-th/9603053. doi: 10.1007/BF02506388.
  67. CR87.
    A. Connes and M. A. Rieffel. Yang-Mills for noncommutative two-tori. In Operator algebras and mathematical physics (Iowa City, Iowa, 1985), volume 62 of Contemp. Math., pages 237–266. Amer. Math. Soc., Providence, RI, 1987. doi: 10.1090/conm/062/878383.
  68. CR00.
    I. Chepelev and R. Roiban. Renormalization of quantum field theories on noncommutative \(\mathbb {R}^d\). 1. Scalars. JHEP, 05:037, 2000, hep-th/9911098. doi: 10.1088/1126-6708/2000/05/037.
  69. CR01.
    I. Chepelev and R. Roiban. Convergence theorem for noncommutative Feynman graphs and renormalization. JHEP, 03:001, 2001, hep-th/0008090. doi: 10.1088/1126-6708/2001/03/001.
  70. DFGZJ95.
    P. Di Francesco, P. H. Ginsparg, and J. Zinn-Justin. 2-D gravity and random matrices. Phys. Rept., 254:1–133, 1995, hep-th/9306153. doi: 10.1016/0370-1573(94)00084-G.
  71. DFIZ93.
    P. Di Francesco, C. Itzykson, and J. B. Zuber. Polynomial averages in the Kontsevich model. Commun. Math. Phys., 151:193–219, 1993, hep-th/9206090. doi: 10.1007/BF02096753.
  72. DFR95.
    S. Doplicher, K. Fredenhagen, and J. E. Roberts. The quantum structure of space-time at the Planck scale and quantum fields. Commun. Math. Phys., 172:187–220, 1995, hep-th/0303037. doi: 10.1007/BF02104515.
  73. DGMR07.
    M. Disertori, R. Gurau, J. Magnen, and V. Rivasseau. Vanishing of beta function of non-commutative \(\phi ^4_4\) theory to all orders. Phys. Lett., B649:95–102, 2007, hep-th/0612251. doi: 10.1016/j.physletb.2007.04.007.
  74. dGWW07.
    A. de Goursac, J.-C. Wallet, and R. Wulkenhaar. Noncommutative induced gauge theory. Eur. Phys. J., C51:977–987, 2007, hep-th/0703075. doi: 10.1140/epjc/s10052-007-0335-2.
  75. DH98.
    M. R. Douglas and C. M. Hull. D-branes and the noncommutative torus. JHEP, 02:008, 1998, hep-th/9711165. doi: 10.1088/1126-6708/1998/02/008.
  76. dJHW19.
    J. de Jong, A. Hock, and R. Wulkenhaar. work in progress. 2019.Google Scholar
  77. DN01.
    M. R. Douglas and N. A. Nekrasov. Noncommutative field theory. Rev. Mod. Phys., 73:977–1029, 2001, hep-th/0106048. doi: 10.1103/RevModPhys.73.977.
  78. DPV16.
    D. D’Ascanio, P. Pisani, and D. V. Vassilevich. Renormalization on noncommutative torus. Eur. Phys. J., C76(4):180, 2016, 1602.01479. doi: 10.1140/epjc/s10052-016-4022-z.
  79. DR07.
    M. Disertori and V. Rivasseau. Two- and three-loops beta function of non-commutative \(\phi ^4_4\) theory. Eur. Phys. J., C50:661–671, 2007, hep-th/0610224. doi: 10.1140/epjc/s10052-007-0211-0.
  80. DS90.
    M. R. Douglas and S. H. Shenker. Strings in less than one dimension. Nucl. Phys., B335:635–654, 1990. doi: 10.1016/0550-3213(90)90522-F.
  81. DS03.
    S. Denk and M. Schweda. Time ordered perturbation theory for nonlocal interactions: Applications to NCQFT. JHEP, 09:032, 2003, hep-th/0306101. doi: 10.1088/1126-6708/2003/09/032.
  82. DSvZ18.
    V. Delecroix, J. Schmitt, and J. van Zelm. admcycles – a Sage program for calculations in the tautological ring of \(\overline {\mathcal {M}}_{g,n}\) and computation of cycles of admissible covers, 2018. URL https://people.math.ethz.ch/~schmittj/admcycles.html.
  83. EILS08.
    D. Essouabri, B. Iochum, C. Levy, and A. Sitarz. Spectral action on noncommutative torus. J. Noncommut. Geom., 2(1):53–123, 2008, 0704.0564. doi: 10.4171/JNCG/16.
  84. EK82.
    T. Eguchi and H. Kawai. Reduction of dynamical degrees of freedom in the large N gauge theory. Phys. Rev. Lett., 48:1063, 1982. doi: 10.1103/PhysRevLett.48.1063.
  85. Ell76.
    G. A. Elliott. On the classification of inductive limits of sequences of semisimple finite-dimensional algebras. J. Algebra, 38(1):29–44, 1976. doi: 10.1016/0021-8693(76)90242-8.
  86. EO07.
    B. Eynard and N. Orantin. Invariants of algebraic curves and topological expansion. Commun. Num. Theor. Phys., 1:347–452, 2007, math-ph/0702045. doi: 10.4310/CNTP.2007.v1.n2.a4.
  87. Eyn04.
    B. Eynard. Topological expansion for the 1-Hermitian matrix model correlation functions. JHEP, 11:031, 2004, hep-th/0407261. doi: 10.1088/1126-6708/2004/11/031.
  88. Eyn14.
    B. Eynard. Invariants of spectral curves and intersection theory of moduli spaces of complex curves. Commun. Num. Theor. Phys., 8:541–588, 2014, 1110.2949. doi: 10.4310/CNTP.2014.v8.n3.a4.
  89. Eyn16.
    B. Eynard. Counting surfaces, volume 70 of Progress in Mathematical Physics. Birkhäuser/Springer, 2016. doi: 10.1007/978-3-7643-8797-6. CRM Aisenstadt chair lectures.
  90. Eyn19.
    B. Eynard. Large genus behavior of topological recursion. 2019, http://arxiv.org/abs/1905.11270.
  91. Fey49.
    R. P. Feynman. Space-time approach to quantum electrodynamics. Phys. Rev., 76:769–789, 1949. doi: 10.1103/PhysRev.76.769.
  92. Fil96.
    T. Filk. Divergencies in a field theory on quantum space. Phys. Lett., B376:53–58, 1996. doi: 10.1016/0370-2693(96)00024-X.
  93. FP67.
    L. D. Faddeev and V. N. Popov. Feynman diagrams for the Yang-Mills field. Phys. Lett., B25:29–30, 1967. doi: 10.1016/0370-2693(67)90067-6.
  94. Frö82.
    J. Fröhlich. On the triviality of \(\lambda \phi ^4_d\) theories and the approach to the critical point in d ≥ 4 dimensions. Nucl. Phys., B200:281–296, 1982. doi: 10.1016/0550-3213(82)90088-8.
  95. FS09.
    A. Fischer and R. J. Szabo. Duality covariant quantum field theory on noncommutative Minkowski space. JHEP, 02:031, 2009, 0810.1195. doi: 10.1088/1126-6708/2009/02/031.
  96. GAO83.
    A. Gonzalez-Arroyo and M. Okawa. The twisted Eguchi-Kawai model: A reduced model for large N lattice gauge theory. Phys. Rev., D27:2397, 1983. doi: 10.1103/PhysRevD.27.2397.
  97. Gar00.
    M. R. Garousi. Noncommutative world volume interactions on D-branes and Dirac-Born-Infeld action. Nucl. Phys., B579:209–228, 2000, hep-th/9909214. doi: 10.1016/S0550-3213(99)00826-3.
  98. Gay03.
    V. Gayral. The action functional for Moyal planes. Lett. Math. Phys., 65:147–157, 2003, hep-th/0307220. doi: 10.1023/B:MATH.0000004380.57824.94.
  99. GBV88.
    J. M. Gracia-Bondía and J. C. Várilly. Algebras of distributions suitable for phase space quantum mechanics. 1. J. Math. Phys., 29:869–879, 1988. doi: 10.1063/1.528200.
  100. GGBI+04.
    V. Gayral, J. M. Gracia-Bondía, B. Iochum, T. Schücker, and J. C. Várilly. Moyal planes are spectral triples. Commun. Math. Phys., 246:569–623, 2004, hep-th/0307241. doi: 10.1007/s00220-004-1057-z.
  101. GHW19.
    H. Grosse, A. Hock, and R. Wulkenhaar. A Laplacian to compute intersection numbers on \(\overline {\mathcal {M}}_{g,n}\) and correlation functions in NCQFT. 2019, 1903.12526.
  102. GHW19b.
    H. Grosse, A. Hock, and R. Wulkenhaar. Solution of all quartic matrix models. 2019, http://arxiv.org/abs/1906.04600.
  103. GHW19c.
    H. Grosse, A. Hock, and R. Wulkenhaar. Solution of the self-dual Φ 4 QFT-model on four-dimensional Moyal space. 2019, http://arxiv.org/abs/1908.04543.
  104. GI05.
    V. Gayral and B. Iochum. The spectral action for Moyal planes. J. Math. Phys., 46:043503, 2005, hep-th/0402147. doi: 10.1063/1.1855401.
  105. GJ87.
    J. Glimm and A. Jaffe. Quantum physics. A functional integral point of view. Springer-Verlag, New York, second edition, 1987. doi: 10.1007/978-1-4612-4728-9.
  106. GJKW07.
    V. Gayral, J.-H. Jureit, T. Krajewski, and R. Wulkenhaar. Quantum field theory on projective modules. J. Noncommut. Geom., 1(4):431–496, 2007, hep-th/0612048. doi: 10.4171/JNCG/13.
  107. GJS74.
    J. Glimm, A. Jaffe, and T. Spencer. The Wightman axioms and particle structure in the \(\mathcal {P}(\phi )_2\) quantum field model. Ann. of Math. (2), 100:585–632, 1974. doi: 10.2307/1970959.
  108. GKP96a.
    H. Grosse, C. Klimčík, and P. Prešnajder. On finite 4-D quantum field theory in noncommutative geometry. Commun. Math. Phys., 180:429–438, 1996, hep-th/9602115. doi: 10.1007/BF02099720.
  109. GKP96b.
    H. Grosse, C. Klimčík, and P. Prešnajder. Towards finite quantum field theory in noncommutative geometry. Int. J. Theor. Phys., 35:231–244, 1996, hep-th/9505175. doi: 10.1007/BF02083810.
  110. GL07.
    H. Grosse and G. Lechner. Wedge-local quantum fields and noncommutative Minkowski space. JHEP, 11:012, 2007, 0706.3992. doi: 10.1088/1126-6708/2007/11/012.
  111. GL08.
    H. Grosse and G. Lechner. Noncommutative deformations of Wightman quantum field theories. JHEP, 09:131, 2008, 0808.3459. doi: 10.1088/1126-6708/2008/09/131.
  112. GLLV13.
    H. Grosse, G. Lechner, T. Ludwig, and R. Verch. Wick rotation for quantum field theories on degenerate Moyal space(-time). J. Math. Phys., 54:022307, 2013, 1111.6856. doi: 10.1063/1.4790886.
  113. GM90.
    D. J. Gross and A. A. Migdal. Nonperturbative two-dimensional quantum gravity. Phys. Rev. Lett., 64:127–130, 1990. doi: 10.1103/PhysRevLett.64.127.
  114. GM92.
    H. Grosse and J. Madore. A noncommutative version of the Schwinger model. Phys. Lett., B283:218–222, 1992. doi: 10.1016/0370-2693(92)90011-R.
  115. GM00.
    J. Gomis and T. Mehen. Space-time noncommutative field theories and unitarity. Nucl. Phys., B591:265–276, 2000, hep-th/0005129. doi: 10.1016/S0550-3213(00)00525-3.
  116. GM04.
    A. B. Goncharov and Y. I. Manin. Multiple ζ-motives and moduli spaces \(\overline {\mathfrak {M}}_{0,n}\). Compos. Math., 140(1):1–14, 2004. doi: 10.1112/S0010437X03000125.
  117. GMRT09.
    R. Gurau, J. Magnen, V. Rivasseau, and A. Tanasa. A translation-invariant renormalizable non-commutative scalar model. Commun. Math. Phys., 287:275–290, 2009, 0802.0791. doi: 10.1007/s00220-008-0658-3.
  118. GMS01.
    H. Grosse, J. Madore, and H. Steinacker. Field theory on the q deformed fuzzy sphere. 1. J. Geom. Phys., 38:308–342, 2001, hep-th/0005273. doi: 10.1016/S0393-0440(00)00068-1.
  119. GMS02.
    H. Grosse, J. Madore, and H. Steinacker. Field theory on the q deformed fuzzy sphere. 2. Quantization. J. Geom. Phys., 43:205–240, 2002, hep-th/0103164. doi: 10.1016/S0393-0440(02)00023-2.
  120. GR07.
    R. Gurau and V. Rivasseau. Parametric representation of noncommutative field theory. Commun. Math. Phys., 272:811–835, 2007, math-ph/0606030. doi: 10.1007/s00220-007-0215-5.
  121. GR11.
    R. Gurau and V. Rivasseau. The 1/N expansion of colored tensor models in arbitrary dimension. Europhys. Lett., 95(5):50004, 2011, 1101.4182. doi: 10.1209/0295-5075/95/50004.
  122. GR12.
    R. Gurau and J. P. Ryan. Colored tensor models - A review. SIGMA, 8:020, 2012, 1109.4812. doi: 10.3842/SIGMA.2012.020.
  123. GR15.
    R. Gurau and V. Rivasseau. The multiscale loop vertex expansion. Annales Henri Poincaré, 16(8):1869–1897, 2015, 1312.7226. doi: 10.1007/s00023-014-0370-0.
  124. GRM09.
    R. Gurau, V. Rivasseau, and J. Magnen. Tree quantum field theory. Annales Henri Poincaré, 10:867–891, 2009, 0807.4122. doi: 10.1007/s00023-009-0002-2.
  125. Gro46.
    H. J. Groenewold. On the principles of elementary quantum mechanics. Physica, 12:405–460, 1946. doi: 10.1016/S0031-8914(46)80059-4.
  126. GRS14.
    R. Gurau, V. Rivasseau, and A. Sfondrini. Renormalization: an advanced overview. 2014, 1401.5003.
  127. GRVT06.
    R. Gurau, V. Rivasseau, and F. Vignes-Tourneret. Propagators for noncommutative field theories. Annales Henri Poincaré, 7:1601–1628, 2006, hep-th/0512071. doi: 10.1007/s00023-006-0296-2.
  128. GS99.
    H. Grosse and A. Strohmaier. Towards a nonperturbative covariant regularization in 4-D quantum field theory. Lett. Math. Phys., 48:163–179, 1999, hep-th/9902138. doi: 10.1023/A:1007518622795.
  129. GS01.
    S. S. Gubser and S. L. Sondhi. Phase structure of noncommutative scalar field theories. Nucl. Phys., B605:395–424, 2001, hep-th/0006119. doi: 10.1016/S0550-3213(01)00108-0.
  130. GS06a.
    H. Grosse and H. Steinacker. A nontrivial solvable noncommutative ϕ 3 model in 4 dimensions. JHEP, 08:008, 2006, hep-th/0603052. doi: 10.1088/1126-6708/2006/08/008.
  131. GS06b.
    H. Grosse and H. Steinacker. Renormalization of the noncommutative ϕ 3 model through the Kontsevich model. Nucl. Phys., B746:202–226, 2006, hep-th/0512203. doi: 10.1016/j.nuclphysb.2006.04.007.
  132. GS08.
    H. Grosse and H. Steinacker. Exact renormalization of a noncommutative ϕ 3 model in 6 dimensions. Adv. Theor. Math. Phys., 12(3):605–639, 2008, hep-th/0607235. doi: 10.4310/ATMP.2008.v12.n3.a4.
  133. GSW08.
    H. Grosse, H. Steinacker, and M. Wohlgenannt. Emergent gravity, matrix models and UV/IR mixing. JHEP, 04:023, 2008, 0802.0973. doi: 10.1088/1126-6708/2008/04/023.
  134. GSW17.
    H. Grosse, A. Sako, and R. Wulkenhaar. Exact solution of matricial \(\Phi ^3_2\) quantum field theory. Nucl. Phys., B925:319–347, 2017, 1610.00526. doi: 10.1016/j.nuclphysb.2017.10.010.
  135. GSW18.
    H. Grosse, A. Sako, and R. Wulkenhaar. The \(\Phi ^3_4\) and \(\Phi ^3_6\) matricial QFT models have reflection positive two-point function. Nucl. Phys., B926:20–48, 2018, 1612.07584. doi: 10.1016/j.nuclphysb.2017.10.022.
  136. Gur11a.
    R. Gurau. Colored group field theory. Commun. Math. Phys., 304:69–93, 2011, 0907.2582. doi: 10.1007/s00220-011-1226-9.
  137. Gur11b.
    R. Gurau. The 1/N expansion of colored tensor models. Annales Henri Poincaré, 12:829–847, 2011, 1011.2726. doi: 10.1007/s00023-011-0101-8.
  138. Gur12.
    R. Gurau. The complete 1/N expansion of colored tensor models in arbitrary dimension. Annales Henri Poincaré, 13:399–423, 2012, 1102.5759. doi: 10.1007/s00023-011-0118-z.
  139. Gur14.
    R. Gurau. The 1∕N expansion of tensor models beyond perturbation theory. Commun. Math. Phys., 330:973–1019, 2014, 1304.2666. doi: 10.1007/s00220-014-1907-2.
  140. Gur17.
    R. Gurau. Random Tensors. Oxford University Press, Oxford, 2017.zbMATHGoogle Scholar
  141. GW73.
    D. J. Gross and F. Wilczek. Ultraviolet behavior of non-Abelian gauge theories. Phys. Rev. Lett., 30:1343–1346, 1973. doi: 10.1103/PhysRevLett.30.1343.
  142. GW02.
    J. M. Grimstrup and R. Wulkenhaar. Quantisation of θ-expanded noncommutative QED. Eur. Phys. J., C26:139–151, 2002, hep-th/0205153. doi: 10.1140/epjc/s2002-01038-9.
  143. GW03.
    H. Grosse and R. Wulkenhaar. Renormalisation of ϕ 4-theory on noncommutative \(\mathbb {R}^2\) in the matrix base. JHEP, 12:019, 2003, hep-th/0307017. doi: 10.1088/1126-6708/2003/12/019.
  144. GW04.
    H. Grosse and R. Wulkenhaar. The β-function in duality covariant noncommutative ϕ 4-theory. Eur. Phys. J., C35:277–282, 2004, hep-th/0402093. doi: 10.1140/epjc/s2004-01853-x.
  145. GW05a.
    H. Grosse and R. Wulkenhaar. Power-counting theorem for non-local matrix models and renormalisation. Commun. Math. Phys., 254:91–127, 2005, hep-th/0305066. doi: 10.1007/s00220-004-1238-9.
  146. GW05b.
    H. Grosse and R. Wulkenhaar. Renormalisation of ϕ 4-theory on noncommutative \(\mathbb {R}^4\) in the matrix base. Commun. Math. Phys., 256:305–374, 2005, hep-th/0401128. doi: 10.1007/s00220-004-1285-2.
  147. GW07.
    H. Grosse and M. Wohlgenannt. Induced gauge theory on a noncommutative space. Eur. Phys. J., C52:435–450, 2007, hep-th/0703169. doi: 10.1140/epjc/s10052-007-0369-5.
  148. GW09.
    H. Grosse and R. Wulkenhaar. Progress in solving a noncommutative quantum field theory in four dimensions. 2009, 0909.1389.
  149. GW12.
    H. Grosse and R. Wulkenhaar. 8D-spectral triple on 4D-Moyal space and the vacuum of noncommutative gauge theory. J. Geom. Phys., 62:1583–1599, 2012, 0709.0095. doi: 10.1016/j.geomphys.2012.03.005.
  150. GW13a.
    V. Gayral and R. Wulkenhaar. Spectral geometry of the Moyal plane with harmonic propagation. J. Noncommut. Geom., 7:939–979, 2013, 1108.2184. doi: 10.4171/JNCG/140.
  151. GW13b.
    H. Grosse and R. Wulkenhaar. Solvable limits of a 4D noncommutative QFT. 2013, 1306.2816.
  152. GW14a.
    H. Grosse and R. Wulkenhaar. Self-dual noncommutative ϕ 4-theory in four dimensions is a non-perturbatively solvable and non-trivial quantum field theory. Commun. Math. Phys., 329:1069–1130, 2014, 1205.0465. doi: 10.1007/s00220-014-1906-3.
  153. GW14b.
    H. Grosse and R. Wulkenhaar. Solvable 4D noncommutative QFT: phase transitions and quest for reflection positivity. 2014, 1406.7755.
  154. GW16.
    H. Grosse and R. Wulkenhaar. On the fixed point equation of a solvable 4D QFT model. Vietnam J. Math., 44(1):153–180, 2016, 1505.05161. doi: 10.1007/s10013-015-0174-7.
  155. Haa58.
    R. Haag. Quantum field theories with composite particles and asymptotic conditions. Phys. Rev., 112:669–673, 1958. doi: 10.1103/PhysRev.112.669.
  156. Haa96.
    R. Haag. Local quantum physics. Fields, particles, algebras. Texts and Monographs in Physics. Springer-Verlag, Berlin, second edition, 1996. doi: 10.1007/978-3-642-61458-3.
  157. Hau23.
    F. Hausdorff. Momentprobleme für ein endliches Intervall. Math. Z., 16(1):220–248, 1923. doi: 10.1007/BF01175684.
  158. Haw99.
    E. Hawkins. Noncommutative regularization for the practical man. 1999, hep-th/9908052.
  159. Hay00.
    M. Hayakawa. Perturbative analysis on infrared aspects of noncommutative QED on \(\mathbb {R}^4\). Phys. Lett., B478:394–400, 2000, hep-th/9912094. doi: 10.1016/S0370-2693(00)00242-2.
  160. Hei38.
    W. Heisenberg. Die Grenzen der Anwendbarkeit der bisherigen Quantentheorie. Z. Phys., 110:251–266, 1938. doi: 10.1007/BF01342872.
  161. Hep66.
    K. Hepp. Proof of the Bogolyubov-Parasiuk theorem on renormalization. Commun. Math. Phys., 2:301–326, 1966. doi: 10.1007/BF01773358.
  162. HK64.
    R. Haag and D. Kastler. An algebraic approach to quantum field theory. J. Math. Phys., 5:848–861, 1964. doi: 10.1063/1.1704187.
  163. HW18.
    A. Hock and R. Wulkenhaar. Noncommutative 3-colour scalar quantum field theory model in 2D. Eur. Phys. J., C78(7):580, 2018, 1804.06075. doi: 10.1140/epjc/s10052-018-6042-3.
  164. IKTW01.
    S. Iso, Y. Kimura, K. Tanaka, and K. Wakatsuki. Noncommutative gauge theory on fuzzy sphere from matrix model. Nucl. Phys., B604:121–147, 2001, hep-th/0101102. doi: 10.1016/S0550-3213(01)00173-0.
  165. ILS09.
    B. Iochum, C. Levy, and A. Sitarz. Spectral action on SU q(2). Commun. Math. Phys., 289:107–155, 2009, 0803.1058. doi: 10.1007/s00220-009-0810-8.
  166. IMSS11.
    B. Iochum, T. Masson, T. Schucker, and A. Sitarz. Compact κ-deformation and spectral triples. Rept. Math. Phys., 68:37–64, 2011, 1004.4190. doi: 10.1016/S0034-4877(11)60026-8.
  167. IZ92.
    C. Itzykson and J. B. Zuber. Combinatorics of the modular group. 2. The Kontsevich integrals. Int. J. Mod. Phys., A7:5661–5705, 1992, hep-th/9201001. doi: 10.1142/S0217751X92002581.
  168. JNOS17.
    A. Jaffe, K.-H. Neeb, G. Olafsson, and B. Schlein, editors. Reflection positivity, volume 14 of Oberwolfach Rep., 2017. doi: 10.4171/OWR/2017/55.
  169. JSSW00.
    B. Jurčo, S. Schraml, P. Schupp, and J. Wess. Enveloping algebra valued gauge transformations for non-Abelian gauge groups on noncommutative spaces. Eur. Phys. J., C17:521–526, 2000, hep-th/0006246. doi: 10.1007/s100520000487.
  170. JSW01.
    B. Jurčo, P. Schupp, and J. Wess. Non-Abelian noncommutative gauge theory via noncommutative extra dimensions. Nucl. Phys., B604:148–180, 2001, hep-th/0102129. doi: 10.1016/S0550-3213(01)00191-2.
  171. JW00.
    A. M. Jaffe and E. Witten. Quantum Yang-Mills theory. 2000. URL https://www.claymath.org/sites/default/files/yangmills.pdf.
  172. Kac49.
    M. Kac. On distributions of certain Wiener functionals. Trans. Amer. Math. Soc., 65:1–13, 1949. doi: 10.2307/1990512.
  173. Kit15a.
    A. Kitaev. A simple model of quantum holography. 1. Talk at KITP, 2015. URL http://online.kitp.ucsb.edu/online/entangled15/kitaev/.
  174. Kit15b.
    A. Kitaev. A simple model of quantum holography. 2. Talk at KITP, 2015. URL http://online.kitp.ucsb.edu/online/entangled15/kitaev2/.
  175. KK66.
    T. Kōmura and Y. Kōmura. Über die Einbettung der nuklearen Räume in (s)A. Math. Ann., 162:284–288, 1966. doi: 10.1007/BF01360917.
  176. KL81.
    A. Klein and L. J. Landau. Construction of a unique self-adjoint generator for a symmetric local semigroup. J. Funct. Anal., 44(2):121–137, 1981. doi: 10.1016/0022-1236(81)90007-0.
  177. Kon92.
    M. Kontsevich. Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys., 147:1–23, 1992. doi: 10.1007/BF02099526.
  178. Kon03.
    M. Kontsevich. Deformation quantization of Poisson manifolds. 1. Lett. Math. Phys., 66:157–216, 2003, q-alg/9709040. doi: 10.1023/B:MATH.0000027508.00421.bf.
  179. KPT18.
    I. R. Klebanov, F. Popov, and G. Tarnopolsky. TASI lectures on large N tensor models. PoS, TASI2017:004, 2018, 1808.09434. doi: 10.22323/1.305.0004.
  180. Kre98.
    D. Kreimer. On the Hopf algebra structure of perturbative quantum field theories. Adv. Theor. Math. Phys., 2:303–334, 1998, q-alg/9707029. doi: 10.4310/ATMP.1998.v2.n2.a4.
  181. Kre00.
    D. Kreimer. Chen’s iterated integral represents the operator product expansion. Adv. Theor. Math. Phys., 3:627–670, 2000, hep-th/9901099. doi: 10.4310/ATMP.1999.v3.n3.a7.
  182. KRTW10.
    T. Krajewski, V. Rivasseau, A. Tanasă, and Z. Wang. Topological graph polynomials and quantum field theory. I. Heat kernel theories. J. Noncommut. Geom., 4(1):29–82, 2010, 0811.0186. doi: 10.4171/JNCG/49.
  183. KRVT11.
    T. Krajewski, V. Rivasseau, and F. Vignes-Tourneret. Topological graph polynomials and quantum field theory, part II. Mehler kernel theories. Annales Henri Poincaré, 12:483–545, 2011, 0912.5438. doi: 10.1007/s00023-011-0087-2.
  184. KS96.
    R. Koekoek and R. F. Swarttouw. The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue. 1996, math/9602214.
  185. KS02.
    A. Konechny and A. S. Schwarz. Introduction to M(atrix) theory and noncommutative geometry. Phys. Rept., 360:353–465, 2002, hep-th/0012145. doi: 10.1016/S0370-1573(01)00096-5.
  186. Kul76.
    P. P. Kulish. Factorization of the classical and quantum S-matrix and conservation laws. Theor. Math. Phys., 26:132, 1976. doi: 10.1007/BF01079418. [also in Teor. Mat. Fiz. 26:198, 1976].
  187. KW00.
    T. Krajewski and R. Wulkenhaar. Perturbative quantum gauge fields on the noncommutative torus. Int. J. Mod. Phys., A15:1011–1030, 2000, hep-th/9903187. doi: 10.1142/S0217751X00000495.
  188. Lag70.
    J. L. Lagrange. Nouvelle méthode pour résoudre des équations littérales par le moyen de séries. Mém. Acad. Roy. des Sci. et Belles-Lettres de Berlin, 24, 1770.Google Scholar
  189. LAK54.
    L. D. Landau, A. A. Abrikosov, and I. M. Khalatnikov. On the removal of infinities in quantum electrodynamics (in russ.). Dokl. Akad. Nauk SSSR, 95:497–500, 1954.Google Scholar
  190. Lam58.
    J. H. Lambert. Observationes variae in mathesin puram. Acta Helvetica, physico-mathematico-anatomico-botanico-medica, 3:128–168, 1758.Google Scholar
  191. LLS01.
    G. Landi, F. Lizzi, and R. J. Szabo. From large N matrices to the noncommutative torus. Commun. Math. Phys., 217:181–201, 2001, hep-th/9912130. doi: 10.1007/s002200000356.
  192. LLS04.
    G. Landi, F. Lizzi, and R. J. Szabo. A new matrix model for noncommutative field theory. Phys. Lett., B578:449–458, 2004, hep-th/0309031. doi: 10.1016/j.physletb.2003.10.059.
  193. LPW88.
    J. M. F. Labastida, M. Pernici, and E. Witten. Topological gravity in two dimensions. Nucl. Phys., B310:611–624, 1988. doi: 10.1016/0550-3213(88)90094-6.
  194. LS02a.
    E. Langmann and R. J. Szabo. Duality in scalar field theory on noncommutative phase spaces. Phys. Lett., B533:168–177, 2002, hep-th/0202039. doi: 10.1016/S0370-2693(02)01650-7.
  195. LS02b.
    Y. Liao and K. Sibold. Time ordered perturbation theory on noncommutative space-time. 2. Unitarity. Eur. Phys. J., C25:479–486, 2002, hep-th/0206011. doi: 10.1007/s10052-002-1018-7.
  196. LS02c.
    Y. Liao and K. Sibold. Time ordered perturbation theory on noncommutative space-time: Basic rules. Eur. Phys. J., C25:469–477, 2002, hep-th/0205269. doi: 10.1007/s10052-002-1017-8.
  197. LSZ03.
    E. Langmann, R. J. Szabo, and K. Zarembo. Exact solution of noncommutative field theory in background magnetic fields. Phys. Lett., B569:95–101, 2003, hep-th/0303082. doi: 10.1016/j.physletb.2003.07.020.
  198. LSZ04.
    E. Langmann, R. J. Szabo, and K. Zarembo. Exact solution of quantum field theory on noncommutative phase spaces. JHEP, 01:017, 2004, hep-th/0308043. doi: 10.1088/1126-6708/2004/01/017.
  199. LZ04.
    S. K. Lando and A. K. Zvonkin. Graphs on surfaces and their applications, volume 141 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-540-38361-1. With an appendix by Don B. Zagier, Low-Dimensional Topology, II.
  200. Mad92.
    J. Madore. The fuzzy sphere. Class. Quant. Grav., 9:69–88, 1992. doi: 10.1088/0264-9381/9/1/008.
  201. Mad95.
    J. Madore. An introduction to noncommutative differential geometry and its physical applications, volume 206 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1995.zbMATHGoogle Scholar
  202. Min59.
    R. A. Minlos. Generalized random processes and their extension in measure. Trudy Moskov. Mat. Obšč., 8:497–518, 1959. URL http://www.mathnet.ru/php/getFT.phtml?jrnid=mmo&paperid=94&what=fullt&option_lang=eng.Google Scholar
  203. Mir07.
    M. Mirzakhani. Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces. Invent. Math., 167(1):179–222, 2007. doi: 10.1007/s00222-006-0013-2.
  204. Miw82.
    T. Miwa. On Hirota’s difference equations. Proc. Japan Acad. Ser. A Math. Sci., 58(1):9–12, 1982. http://projecteuclid.org/euclid.pja/1195516178.MathSciNetCrossRefGoogle Scholar
  205. Mos75.
    J. Moser. Three integrable Hamiltonian systems connected with isospectral deformations. Adv. Math., 16:197–220, 1975. doi: 10.1016/0001-8708(75)90151-6.
  206. Moy49.
    J. E. Moyal. Quantum mechanics as a statistical theory. Proc. Cambridge Phil. Soc., 45:99–124, 1949. doi: 10.1017/S0305004100000487.
  207. MP90.
    R. C. Myers and V. Periwal. Topological gravity and moduli space. Nucl. Phys., B333:536–550, 1990. doi: 10.1016/0550-3213(90)90050-N.
  208. MR08.
    J. Magnen and V. Rivasseau. Constructive ϕ 4 field theory without tears. Annales Henri Poincaré, 9:403–424, 2008, 0706.2457. doi: 10.1007/s00023-008-0360-1.
  209. MS91.
    Yu. Makeenko and G. W. Semenoff. Properties of Hermitean matrix models in an external field. Mod. Phys. Lett., A6:3455–3466, 1991. doi: 10.1142/S0217732391003985.
  210. MS16.
    J. Maldacena and D. Stanford. Remarks on the Sachdev-Ye-Kitaev model. Phys. Rev., D94(10):106002, 2016, 1604.07818. doi: 10.1103/PhysRevD.94.106002.
  211. MSR99.
    C. P. Martín and D. Sánchez-Ruiz. The one loop UV divergent structure of U(1) Yang-Mills theory on noncommutative \(\mathbb {R}^4\). Phys. Rev. Lett., 83:476–479, 1999, hep-th/9903077. doi: 10.1103/PhysRevLett.83.476.
  212. MSSW00.
    J. Madore, S. Schraml, P. Schupp, and J. Wess. Gauge theory on noncommutative spaces. Eur. Phys. J., C16:161–167, 2000, hep-th/0001203. doi: 10.1007/s100520050012.
  213. MST00.
    A. Matusis, L. Susskind, and N. Toumbas. The IR / UV connection in the noncommutative gauge theories. JHEP, 12:002, 2000, hep-th/0002075. doi: 10.1088/1126-6708/2000/12/002.
  214. MT13.
    P. Martinetti and L. Tomassini. Noncommutative geometry of the Moyal plane: Translation isometries, Connes’ distance on coherent states, Pythagoras equality. Commun. Math. Phys., 323:107–141, 2013, 1110.6164. doi: 10.1007/s00220-013-1760-8.
  215. MVRS00.
    S. Minwalla, M. Van Raamsdonk, and N. Seiberg. Noncommutative perturbative dynamics. JHEP, 02:020, 2000, hep-th/9912072. doi: 10.1088/1126-6708/2000/02/020.
  216. MZ15.
    M. Mirzakhani and P. Zograf. Towards large genus asymptotics of intersection numbers on moduli spaces of curves. Geom. Funct. Anal., 25(4):1258–1289, 2015, 1112.1151. doi: 10.1007/s00039-015-0336-5.
  217. Nel73a.
    E. Nelson. Construction of quantum fields from Markoff fields. J. Functional Analysis, 12:97–112, 1973. doi: 10.1016/0022-1236(73)90091-8.
  218. Nel73b.
    E. Nelson. Quantum fields and Markoff fields. In Partial differential equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971), pages 413–420. Amer. Math. Soc., Providence, R.I., 1973.Google Scholar
  219. Nie09.
    N. Nielsen. Der Eulersche Dilogarithmus und seine Verallgemeinerungen. Nova acta - Kaiserlich Leopoldinisch-Carolinische Deutsche Akademie der Naturforscher, 90(3):121–212, 1909.Google Scholar
  220. NO18.
    K.-H. Neeb and G. Ólafsson. Reflection positivity, volume 32 of SpringerBriefs in Mathematical Physics. Springer, 2018. doi: 10.1007/978-3-319-94755-6.CrossRefGoogle Scholar
  221. Nus55.
    A. E. Nussbaum. The Hausdorff-Bernstein-Widder theorem for semi-groups in locally compact Abelian groups. Duke Math. J., 22:573–582, 1955. URL http://projecteuclid.org/euclid.dmj/1077466543.
  222. ORZ04.
    T. Ohl, R. Rückl, and J. Zeiner. Unitarity of time - like noncommutative gauge theories: The violation of Ward identities in time ordered perturbation theory. Nucl. Phys., B676:229–242, 2004, hep-th/0309021. doi: 10.1016/j.nuclphysb.2003.10.022.
  223. OS73.
    K. Osterwalder and R. Schrader. Axioms for Euclidean Green’s functions. Commun. Math. Phys., 31:83–112, 1973. doi: 10.1007/BF01645738.
  224. OS75.
    K. Osterwalder and R. Schrader. Axioms for Euclidean Green’s functions. 2. Commun. Math. Phys., 42:281–305, 1975. doi: 10.1007/BF01608978.
  225. Pan15.
    E. Panzer. Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals. Computer Physics Communications, 188:148–166, 2015, 1403.3385. doi: 10.1016/j.cpc.2014.10.019. maintained and available at https://bitbucket.org/PanzerErik/hyperint.
  226. Pei33.
    R. Peierls. Zur Theorie des Diamagnetismus von Leitungselektronen. Z. Phys., 80:763, 1933.CrossRefGoogle Scholar
  227. Per07.
    D. Perrot. Anomalies and noncommutative index theory. In Geometric and topological methods for quantum field theory, volume 434 of Contemp. Math., pages 125–160. Amer. Math. Soc., Providence, RI, 2007, hep-th/0603209. doi: 10.1090/conm/434/08344.
  228. Pol73.
    H. D. Politzer. Reliable perturbative results for strong interactions? Phys. Rev. Lett., 30:1346–1349, 1973. doi: 10.1103/PhysRevLett.30.1346.
  229. Pol84.
    J. Polchinski. Renormalization and effective Lagrangians. Nucl. Phys., B231:269–295, 1984. doi: 10.1016/0550-3213(84)90287-6.
  230. PW18.
    E. Panzer and R. Wulkenhaar. Lambert-W solves the noncommutative Φ 4-model. Commun. Math. Phys. (in press), 2019/20, http://arxiv.org/abs/1807.02945, doi: 10.1007/s00220-019-03592-4.
  231. Rie92.
    B. Riemann. Ueber die Hypothesen, welche der Geometrie zugrunde liegen. In Bernhard Riemann’s gesammelte mathematische Werke und wissenschaftlicher Nachlaß, Leipzig, 1892. B. G. Teubner. URL https://www.emis.de/classics/Riemann/Geom.pdf.
  232. Rie90.
    M. A. Rieffel. Noncommutative tori—a case study of noncommutative differentiable manifolds. In Geometric and topological invariants of elliptic operators (Brunswick, ME, 1988), volume 105 of Contemp. Math., pages 191–211. Amer. Math. Soc., Providence, RI, 1990. doi: 10.1090/conm/105/1047281.
  233. Rie93.
    M. A. Rieffel. Deformation quantization for actions of R d. Mem. Amer. Math. Soc., 106(506):x+93, 1993. doi: 10.1090/memo/0506.
  234. Rie04.
    M. A. Rieffel. Gromov-Hausdorff distance for quantum metric spaces. Mem. Amer. Math. Soc., 168(796):viii+91, 2004, math/0011063. doi: 10.1090/memo/0796.
  235. Riv91.
    V. Rivasseau. From Perturbative to Constructive Renormalization. Princeton University Press, New Jersey, 1991.CrossRefGoogle Scholar
  236. Riv07a.
    V. Rivasseau. Constructive matrix theory. JHEP, 09:008, 2007, 0706.1224. doi: 10.1088/1126-6708/2007/09/008.
  237. Riv07b.
    V. Rivasseau. Non-commutative renormalization. In Quantum Spaces, volume 53 of Progress in Mathematical Physics, pages 19–107. Birkhäuser, Basel, 2007, 0705.0705. doi: 10.1007/978-3-7643-8522-4_2.
  238. Riv14.
    V. Rivasseau. The tensor track, III. Fortsch. Phys., 62:81–107, 2014, 1311.1461. doi: 10.1002/prop.201300032.
  239. Rue62.
    D. Ruelle. On the asymptotic condition in quantum field theory. Helv. Phys. Acta, 35:147–163, 1962. doi: 10.5169/seals-113272.
  240. RVTW06.
    V. Rivasseau, F. Vignes-Tourneret, and R. Wulkenhaar. Renormalization of noncommutative ϕ 4-theory by multi-scale analysis. Commun. Math. Phys., 262:565–594, 2006, hep-th/0501036. doi: 10.1007/s00220-005-1440-4.
  241. RW12.
    V. Rivasseau and Z. Wang. Constructive renormalization for \(\Phi ^{4}_2\) theory with loop vertex expansion. J. Math. Phys., 53:042302, 2012, 1104.3443. doi: 10.1063/1.4705689.
  242. RW15.
    V. Rivasseau and Z. Wang. Corrected loop vertex expansion for \(\Phi _2^4\) theory. J. Math. Phys., 56(6):062301, 2015, 1406.7428. doi: 10.1063/1.4922116.
  243. Sch34.
    E. Schrödinger. Über die Unanwendbarkeit der Geometrie im Kleinen. Naturwiss., 31:518–520, 1934. doi: 10.1007/BF01494946.
  244. Sch59.
    J. Schwinger. Euclidean quantum electrodynamics. Phys. Rev., 115:721–731, 1959. doi: 10.1103/PhysRev.115.721.
  245. Sch99.
    V. Schomerus. D-branes and deformation quantization. JHEP, 06:030, 1999, hep-th/9903205. doi: 10.1088/1126-6708/1999/06/030.
  246. Seg01.
    G. Segal. Topological structures in string theory. R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 359(1784):1389–1398, 2001. doi: 10.1098/rsta.2001.0841. Topological methods in the physical sciences (London, 2000).
  247. Sim74.
    B. Simon. TheP(ϕ)2Euclidean (quantum) field theory. Princeton University Press, Princeton, N.J., 1974. Princeton Series in Physics.Google Scholar
  248. SJ99.
    M. M. Sheikh-Jabbari. Renormalizability of the supersymmetric Yang-Mills theories on the noncommutative torus. JHEP, 06:015, 1999, hep-th/9903107. doi: 10.1088/1126-6708/1999/06/015.
  249. Sny47.
    H. S. Snyder. Quantized space-time. Phys. Rev., 71:38–41, 1947. doi: 10.1103/PhysRev.71.38.
  250. SS94.
    P. Schaller and T. Strobl. Poisson structure induced (topological) field theories. Mod. Phys. Lett., A9:3129–3136, 1994, hep-th/9405110. doi: 10.1142/S0217732394002951.
  251. Ste04.
    H. Steinacker. Quantized gauge theory on the fuzzy sphere as random matrix model. Nucl. Phys., B679:66–98, 2004, hep-th/0307075. doi: 10.1016/j.nuclphysb.2003.12.005.
  252. Ste07.
    H. Steinacker. Emergent gravity from noncommutative gauge theory. JHEP, 12:049, 2007, 0708.2426. doi: 10.1088/1126-6708/2007/12/049.
  253. Ste10.
    H. Steinacker. Emergent geometry and gravity from matrix models: an introduction. Class. Quant. Grav., 27:133001, 2010, 1003.4134. doi: 10.1088/0264-9381/27/13/133001.
  254. Str67.
    K. Strebel. On quadratic differentials with closed trajectories and second order poles. J. Analyse Math., 19:373–382, 1967. doi: 10.1007/BF02788726.
  255. Str84.
    K. Strebel. Quadratic differentials, volume 5 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-662-02414-0.CrossRefzbMATHGoogle Scholar
  256. SW64.
    R. Streater and A. Wightman. PCT, Spin and Statistics, and All that. W. A. Benjamin Inc., 1964.zbMATHGoogle Scholar
  257. SW99.
    N. Seiberg and E. Witten. String theory and noncommutative geometry. JHEP, 09:032, 1999, hep-th/9908142. doi: 10.1088/1126-6708/1999/09/032.
  258. SY93.
    S. Sachdev and J. Ye. Gapless spin fluid ground state in a random, quantum Heisenberg magnet. Phys. Rev. Lett., 70:3339, 1993, cond-mat/9212030. doi: 10.1103/PhysRevLett.70.3339.
  259. Sym64.
    K. Symanzik. Application of functional integrals to Euclidean quantum field theory. In Proc. Conf. on Theory and Appl. of Analysis in Function Space (Dedham, Mass. 1963), pages 197–206. The M.I.T. Press, Cambridge, Mass., 1964.Google Scholar
  260. Sza03.
    R. J. Szabo. Quantum field theory on noncommutative spaces. Phys. Rept., 378:207–299, 2003, hep-th/0109162. doi: 10.1016/S0370-1573(03)00059-0.
  261. tH74.
    G. ’t Hooft. A planar diagram theory for strong interactions. Nucl. Phys., B72:461–473, 1974. doi: 10.1016/0550-3213(74)90154-0.
  262. Tri57.
    F. G. Tricomi. Integral equations. Interscience, New York, 1957.zbMATHGoogle Scholar
  263. Vas04.
    D. V. Vassilevich. Noncommutative heat kernel. Lett. Math. Phys., 67:185–194, 2004, hep-th/0310144. doi: 10.1023/B:MATH.0000035037.50663.b1.
  264. VGB88.
    J. C. Várilly and J. M. Gracia-Bondía. Algebras of distributions suitable for phase-space quantum mechanics. 2. Topologies on the Moyal algebra. J. Math. Phys., 29:880–887, 1988. doi: 10.1063/1.527984.
  265. VGB99.
    J. C. Várilly and J. M. Gracia-Bondía. On the ultraviolet behavior of quantum fields over noncommutative manifolds. Int. J. Mod. Phys., A14:1305, 1999, hep-th/9804001. doi: 10.1142/S0217751X99000671.
  266. vN32.
    J. von Neumann. Mathematische Grundlagen der Quantenmechanik. Springer-Verlag, Berlin, 1932. URL http://resolver.sub.uni-goettingen.de/purl?PPN379400774.
  267. Vog00.
    D. Vogt. Lectures on Fréchet spaces, 2000. URL http://www2.math.uni-wuppertal.de/~vogt/vorlesungen/fs.pdf.
  268. VT07.
    F. Vignes-Tourneret. Renormalization of the orientable non-commutative Gross-Neveu model. Annales Henri Poincaré, 8:427–474, 2007, math-ph/0606069. doi: 10.1007/s00023-006-0312-6.
  269. Wan18.
    Z. Wang. Constructive renormalization of the 2-dimensional Grosse-Wulkenhaar model. Annales Henri Poincaré, 19(8):2435–2490, 2018, 1805.06365. doi: 10.1007/s00023-018-0688-0.
  270. Wey28.
    H. Weyl. Gruppentheorie und Quantenmechanik. S. Hirzel, Leipzig, 1928.zbMATHGoogle Scholar
  271. WG64.
    A. Wightman and L. Gårding. Fields as operator-valued distributions in relativistic quantum theory. Arkiv för fysik. Almqvist & Wiksell, 1964.zbMATHGoogle Scholar
  272. Whe55.
    J. A. Wheeler. Geons. Phys. Rev., 97:511–536, 1955. doi: 10.1103/PhysRev.97.511.
  273. Wid31.
    D. V. Widder. Necessary and sufficient conditions for the representation of a function as a Laplace integral. Trans. Amer. Math. Soc., 33(4):851–892, 1931. doi: 10.2307/1989513.
  274. Wig32.
    E. P. Wigner. On the quantum correction for thermodynamic equilibrium. Phys. Rev., 40:749–760, 1932. doi: 10.1103/PhysRev.40.749.
  275. Wig56.
    A. S. Wightman. Quantum field theory in terms of vacuum expectation values. Phys. Rev., 101:860–866, 1956. doi: 10.1103/PhysRev.101.860.
  276. Wil74.
    K. G. Wilson. Confinement of quarks. Phys. Rev., D10:2445–2459, 1974. doi: 10.1103/PhysRevD.10.2445.
  277. Wit88.
    E. Witten. Topological quantum field theory. Commun. Math. Phys., 117:353, 1988. doi: 10.1007/BF01223371.
  278. Wit90.
    E. Witten. On the structure of the topological phase of two-dimensional gravity. Nucl. Phys., B340:281–332, 1990. doi: 10.1016/0550-3213(90)90449-N.
  279. Wit91.
    E. Witten. Two-dimensional gravity and intersection theory on moduli space. In Surveys in differential geometry (Cambridge, MA, 1990), pages 243–310. Lehigh Univ., Bethlehem, PA, 1991. doi: 10.4310/SDG.1990.v1.n1.a5.
  280. Wit92.
    E. Witten. On the Kontsevich model and other models of two-dimensional gravity. In Differential geometric methods in theoretical physics. Proceedings, 20th International Conference, New York, 1991, pages 176–216. World Sci. Publ., River Edge, NJ, 1992.Google Scholar
  281. Wit16.
    E. Witten. An SYK-like model without disorder. 2016, 1610.09758.
  282. WK74.
    K. G. Wilson and J. B. Kogut. The renormalization group and the 𝜖 expansion. Phys. Rept., 12:75–199, 1974. doi: 10.1016/0370-1573(74)90023-4.
  283. Wul00.
    R. Wulkenhaar. Slavnov-Taylor identity in noncommutative geometry. Int. J. Mod. Phys., B14:2503–2509, 2000. doi: 10.1142/S0217979200002053.
  284. Wul02.
    R. Wulkenhaar. Non-renormalizability of θ-expanded noncommutative QED. JHEP, 03:024, 2002, hep-th/0112248. doi: 10.1088/1126-6708/2002/03/024.
  285. Wul06.
    R. Wulkenhaar. Field theories on deformed spaces. J. Geom. Phys., 56:108–141, 2006. doi: 10.1016/j.geomphys.2005.04.019.
  286. Zah06.
    J. W. Zahn. Dispersion relations in quantum electrodynamics on the noncommutative Minkowski space. PhD thesis, Hamburg U., 2006, 0707.2149. URL http://www-library.desy.de/cgi-bin/showprep.pl?thesis06-037.
  287. Zah11.
    J. Zahn. Divergences in quantum field theory on the noncommutative two-dimensional Minkowski space with Grosse-Wulkenhaar potential. Annales Henri Poincaré, 12:777–804, 2011, 1005.0541. doi: 10.1007/s00023-011-0089-0.
  288. Zim69.
    W. Zimmermann. Convergence of Bogolyubov’s method of renormalization in momentum space. Commun. Math. Phys., 15:208–234, 1969. doi: 10.1007/BF01645676.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Mathematisches Institut der Westfälischen Wilhelms-UniversitätMünsterGermany

Personalised recommendations