Advertisement

Continuity properties and Alexandroff theorem in Vietoris topology

  • Alina Gavriluţ
  • Ioan Mercheş
  • Maricel Agop
Chapter

Abstract

In this chapter, some continuity properties, such as increasing/decreasing convergence, exhaustivity, order continuity, regularity are introduced and studied in Vietoris topology for fuzzy set multifunctions taking values in the family of subsets of a Hausdorff linear topological space.

References

  1. 1.
    Apreutesei, G.: Families of subsets and the coincidence of hypertopologies. An. Şt. Univ. Iaşi XLIX, 1–18 (2003)Google Scholar
  2. 2.
    Beer, G.: Topologies on Closed and Closed Convex Sets. Kluwer, Dordrecht (1993)CrossRefGoogle Scholar
  3. 3.
    Billara, V.: Topologies for 2X. Macmillan, New York (1963)Google Scholar
  4. 4.
    Dinculeanu, N.: Measure Theory and Real Functions (in Romanian). Ed. Did. şi Ped., Bucureşti (1964)Google Scholar
  5. 5.
    Gavriluţ, A.: Properties of regularity for multisubmeasures with respect to the Vietoris topology. An. Şt. Univ. Iaşi, L, s. I a f. 2, 373–392 (2004)Google Scholar
  6. 6.
    Gavriluţ, A.: Properties of Regularity for Set Multifunctions (in Romanian). Venus Publishing House, Iaşi (2006)Google Scholar
  7. 7.
    Gavriluţ, A.: Non-atomicity and the Darboux property for fuzzy and non-fuzzy Borel/Baire multivalued set functions. Fuzzy Sets Syst. 160, 1308–1317 (2009). Erratum in Fuzzy Sets and Systems 161, 2612–2613 (2010)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gavriluţ, A.: Regularity and autocontinuity of set multifunctions. Fuzzy Sets Syst. 161, 681–693 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gavriluţ, A.: Abstract regular null-null-additive set multifunctions in Hausdorff topology, An. Şt. Univ. Iaşi 59(1). https://doi.org/10.2478/v10157-012-0029-4 MathSciNetCrossRefGoogle Scholar
  10. 10.
    Guo, C., Zhang, D.: On the set-valued fuzzy measures. Inform. Sci. 160, 13–25 (2004)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hu, S., Papageorgiou, N.S.: Handbook of Multivalued Analysis, vol. I. Kluwer, Dordrecht (1997)CrossRefGoogle Scholar
  12. 12.
    Jiang, Q., Suzuki, H.: Lebesque and Saks decompositions of σ-finite fuzzy measures. Fuzzy Sets Syst. 75, 373–385 (1995)CrossRefGoogle Scholar
  13. 13.
    Jiang, Q., Suzuki, H., Wang, Z., Klir, G.: Exhaustivity and absolute continuity of fuzzy measures. Fuzzy Sets Syst. 96, 231–238 (1998)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Klein, E., Thompson, A.: Theory of Correspondences. Wiley, New York (1984)zbMATHGoogle Scholar
  15. 15.
    Michael, E.: Topologies on spaces of subsets. Trans. AMS 71, 152–182 (1951)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Pap, E.: Null-additive Set Functions. Kluwer, Dordrecht (1995)zbMATHGoogle Scholar
  17. 17.
    Precupanu, T.: Linear Topological Spaces and Elements of Convex Analysis (in Romanian). Ed. Acad. Romania (1992)zbMATHGoogle Scholar
  18. 18.
    Precupanu, A., Gavriluţ, A.: A set-valued Egoroff type theorem. Fuzzy Sets Syst. 175, 87–95 (2011)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Precupanu, A., Gavriluţ, A.: Set-valued Lusin type theorem for null-null-additive set multifunctions. Fuzzy Sets Syst. 204, 106–116 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Precupanu, A., Croitoru, A., Godet-Thobie, Ch.: Set-valued Integrals (in Romanian). Iaşi (2011)Google Scholar
  21. 21.
    Precupanu, A., Precupanu, T., Turinici, M., Apreutesei Dumitriu, N., Stamate, C., Satco, B.R., Văideanu, C., Apreutesei, G., Rusu, D., Gavriluţ, A.C., Apetrii, M.: Modern Directions in Multivalued Analysis and Optimization Theory (in Romanian). Venus Publishing House, Iaşi (2006)Google Scholar
  22. 22.
    Sugeno, M.: Theory of fuzzy integrals and its applications, Ph.D. Thesis, Tokyo Institute of Technology (1974)Google Scholar
  23. 23.
    Zhang, D., Guo, C.: Generalized fuzzy integrals of set-valued functions. Fuzzy Sets Syst. 76, 365–373 (1995)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Zhang, D., Wang, Z.: On set-valued fuzzy integrals. Fuzzy Sets Syst. 56, 237–241 (1993)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alina Gavriluţ
    • 1
  • Ioan Mercheş
    • 2
  • Maricel Agop
    • 3
  1. 1.Faculty of MathematicsAlexandru Ioan Cuza UniversityIaşiRomania
  2. 2.Faculty of PhysicsAlexandru Ioan Cuza UniversityIaşiRomania
  3. 3.Physics Department, Gheorghe Asachi TechnicalUniversity of LasiIaşiRomania

Personalised recommendations