Advertisement

Gould integrability on atoms for set multifunctions

  • Alina Gavriluţ
  • Ioan Mercheş
  • Maricel Agop
Chapter

Abstract

In this chapter, results referring to Gould type integrability on atoms are presented for monotone set multifunctions taking values in the family of all closed nonempty subsets of a Banach space, family which is endowed with the Hausdorff topology.

References

  1. 1.
    Abbas, M., Imdad, M., Gopal, D.: ε-weak contractions in fuzzy metric spaces. Iran. J. Fuzzy Syst. 8(5), 141–148 (2011)Google Scholar
  2. 2.
    Alimohammady, M., Ekici, E., Jafari, S., Roohi, M.: On fuzzy upper and lower contra-continuous multifunctions. Iran. J. Fuzzy Syst. 8(3), 149–158 (2011)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Altun, I.: Some fixed point theorems for single and multivalued mappings on ordered non-archimedean fuzzy metric spaces. Iran. J. Fuzzy Syst. 7(1), 91–96 (2010)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics, vol. 580. Springer, Berlin (1977)Google Scholar
  5. 5.
    Chiţescu, I.: Finitely purely atomic measures: coincidence and rigidity properties, Rend. Circ. Mat. Palermo (2) 50(3), 455–476 (2001)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Dobrakov, I.: On submeasures, I. Diss. Math. 112, 5–35 (1974)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Drewnowski, L.: Topological rings of sets, continuous set functions. Integration, I, II, III, Bull. Acad. Polon. Sci. Sér. Math. Astron. Phys. 20, 269–276, 277–286 (1972)Google Scholar
  8. 8.
    Gavriluţ, A.: A Gould type integral with respect to a multisubmeasure. Math. Slovaca 58(1), 1–20 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gavriluţ, A.: On some properties of the Gould type integral with respect to a multisubmeasure. An. Şt. Univ. Iaşi, 52(1), 177–194 (2006)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Gavriluţ, A.: Non-atomicity and the Darboux property for fuzzy and non-fuzzy Borel/Baire multivalued set functions. Fuzzy Sets Syst. 160, 1308–1317 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gavriluţ, A.: Regularity and autocontinuity of set multifunctions. Fuzzy Sets Syst. 160, 681–693 (2009)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Gavriluţ, A.: A Lusin type theorem for regular monotone uniformly autocontinuous set multifunctions. Fuzzy Sets Syst. 161, 2909–2918 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gavriluţ, A., Croitoru, A.: Non-atomicity for fuzzy and non-fuzzy multivalued set functions. Fuzzy Sets Syst. 160, 2106–2116 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Gavriluţ, A., Petcu, A.: A Gould type integral with respect to a submeasure. An. Şt. Univ. Iaşi, Tomul LIII, f.2, 351–368 (2007)Google Scholar
  15. 15.
    Gavriluţ, A., Petcu, A.: Some properties of the Gould type integral with respect to a submeasure. Bul. Inst. Pol. Iaşi, LIII (LVII), Fasc. 5, 121–131 (2007)Google Scholar
  16. 16.
    Gavriluţ, A.C.: Fuzzy Gould integrability on atoms. Iran. J. Fuzzy Syst. 8(3), 113–124 (2011)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Gould, G.G.: On integration of vector-valued measures. Proc. Lond. Math. Soc. 15, 193–225 (1965)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Hu, S., Papageorgiou, N.S.: Handbook of Multivalued Analysis, vol. I. Kluwer Academic Publishers, Dordrecht (1997)CrossRefGoogle Scholar
  19. 19.
    Pap, E.: Null-additive Set Functions. Kluwer Academic Publishers, Dordrecht (1995)zbMATHGoogle Scholar
  20. 20.
    Jiang, Q., Suzuki, H.: Fuzzy measures on metric spaces. Fuzzy Sets Syst. 83, 99–106 (1996)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Precupanu, A., Croitoru, A.: A Gould type integral with respect to a multimeasure, I. An. Şt. Univ. Iaşi 48, 165–200 (2002)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Precupanu, A., Gavriluţ, A., Croitoru, A.: A fuzzy Gould type integral. Fuzzy Sets Syst. 161, 661–680 (2010)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Suzuki, H.: Atoms of fuzzy measures and fuzzy integrals. Fuzzy Sets Syst. 41, 329–342 (1991)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alina Gavriluţ
    • 1
  • Ioan Mercheş
    • 2
  • Maricel Agop
    • 3
  1. 1.Faculty of MathematicsAlexandru Ioan Cuza UniversityIaşiRomania
  2. 2.Faculty of PhysicsAlexandru Ioan Cuza UniversityIaşiRomania
  3. 3.Physics Department, Gheorghe Asachi TechnicalUniversity of LasiIaşiRomania

Personalised recommendations