Atoms and pseudo-atoms for set multifunctions

  • Alina Gavriluţ
  • Ioan Mercheş
  • Maricel Agop


In this chapter, various problems concerning atoms/pseudo-atoms are discussed for fuzzy set multifunctions taking values in the family of all nonvoid closed subsets of a Banach space in Hausdorff topology.


  1. 1.
    Aumann, R.J., Shapley, L.S.: Values of Non-atomic Games. Princeton University Press, Princeton (1974)zbMATHGoogle Scholar
  2. 2.
    Bandyopadhyay, U.: On vector measures with the Darboux property. Q. J. Oxford Math. 25, 57–61 (1974)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38, 325–339 (1967)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Dinculeanu, N.: Vector Measures. VEB Berlin (1966)Google Scholar
  5. 5.
    Dobrakov, I.: On submeasures, I. Diss. Math. 112, 5–35 (1974)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Drewnowski, L.: Topological rings of sets, continuous set functions. Integration, I, II, III, Bull. Acad. Polon. Sci. Sér. Math. Astron. Phys. 20, 269–286 (1972)Google Scholar
  7. 7.
    Gavriluţ, A.: Properties of regularity for multisubmeasures. An. Şt. Univ. Iaşi, 50, 373–392 (2004)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Gavriluţ, A.: Regularity and o-continuity for multisubmeasures. An. Şt. Univ. Iaşi, 50, 393–406 (2004)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Gavriluţ, A.: \(\mathcal {K}\)-tight multisubmeasure, \(\mathcal {K}-\mathcal {D}\)-regular multisubmeasure. An. Şt. Univ. “Al.I. Cuza” Iaşi, 51, 387–404 (2005)Google Scholar
  10. 10.
    Gavriluţ, A.: Non-atomicity and the Darboux property for fuzzy and non-fuzzy Borel/Baire multivalued set functions. Fuzzy Sets Syst. 160, 1308–1317 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gavriluţ, A., Croitoru, A.: An extension by preserving non-atomicity of set multifunctions. Buletinul Institutului Politehnic din Iaşi, Secţia Matematică. Mecanică teoretică. Fizică, Tomul LIII (LVII), Fasc. 5, 111–119 (2007)Google Scholar
  12. 12.
    Gavriluţ, A., Croitoru, A.: Non-atomicity for fuzzy and non-fuzzy multivalued set functions. Fuzzy Sets Syst. 160, 2106–2116 (2009)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Guo, C., Zhang, D.: On the set-valued fuzzy measures. Inform. Sci. 160, 13–25 (2004)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hu, S., Papageorgiou, N.S.: Handbook of Multivalued Analysis, vol. I. Kluwer Academic Publishers, Dordrecht (1997)CrossRefGoogle Scholar
  15. 15.
    Kawabe, J.: Regularity and Lusin’s theorem for Riesz space-valued fuzzy measures. Fuzzy Sets Syst. 158, 895–903 (2007)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Klein, E., Thompson, A.: Theory of Correspondences. Wiley, New York (1984)zbMATHGoogle Scholar
  17. 17.
    Klimkin, V.M., Svistula, M.G.: Darboux property of a non-additive set function. Sb. Math. 192, 969–978 (2001)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Liginlal D., Ow T.T.: Modelling attitude to risk in human decision process: an application of fuzzy measures. Fuzzy Sets Syst. 157, 3040–3054 (2006)CrossRefGoogle Scholar
  19. 19.
    Pap, E.: Null-Additive Set Functions. Kluwer Academic Publishers, Dordrecht (1995)zbMATHGoogle Scholar
  20. 20.
    Pham, T.D., Brandl, M., Nguyen, N.D., Nguyen, T.V.: Fuzzy measure of multiple risk factors in the prediction of osteoporotic fractures. In: Proceedings of the 9th WSEAS International Conference on Fuzzy Systems [FS’08], pp. 171–177. Sofia (2008)Google Scholar
  21. 21.
    Precupanu, A.M.: On the set valued additive and subadditive set functions. An. Şt. Univ. Iaşi, 29, 41–48 (1984)MathSciNetGoogle Scholar
  22. 22.
    Rao, K.P.S.B., Rao, M.B.: Theory of Charges. Academic Press, New York (1983)zbMATHGoogle Scholar
  23. 23.
    Sugeno, M.: Theory of fuzzy integrals and its applications. Ph. D. thesis, Tokyo Institute of Technology, 1974Google Scholar
  24. 24.
    Suzuki, H.: Atoms of fuzzy measures and fuzzy integrals. Fuzzy Sets Syst. 41, 329–342 (1991)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Wu, C., Wu C.: A note on the range of null-additive fuzzy and non-fuzzy measure. Fuzzy Sets Syst. 110, 145–148 (2000)CrossRefGoogle Scholar
  26. 26.
    Wu, C., Sun, B.: Pseudo-atoms of fuzzy and non-fuzzy measures. Fuzzy Sets Syst. 158, 1258–1272 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alina Gavriluţ
    • 1
  • Ioan Mercheş
    • 2
  • Maricel Agop
    • 3
  1. 1.Faculty of MathematicsAlexandru Ioan Cuza UniversityIaşiRomania
  2. 2.Faculty of PhysicsAlexandru Ioan Cuza UniversityIaşiRomania
  3. 3.Physics Department, Gheorghe Asachi TechnicalUniversity of LasiIaşiRomania

Personalised recommendations