Advertisement

Non-atomicity and the Darboux property for fuzzy and non-fuzzy Borel/Baire multivalued set functions

  • Alina Gavriluţ
  • Ioan Mercheş
  • Maricel Agop
Chapter

Abstract

In this chapter, various problems concerning atoms/pseudo-atoms are discussed for fuzzy set multifunctions taking values in the family of all nonvoid closed subsets of a Banach space in Hausdorff topology.

References

  1. 1.
    Belley, J., Morales, P.: Régularité d’une fonction d’ensemble à valeurs dans un groupe topologyque. Ann. Sc. Math. Québec 3, 185–197 (1979)zbMATHGoogle Scholar
  2. 2.
    Dinculeanu, N.: Teoria Măsurii şi Funcţii Reale (in Romanian) (ed.) Did. şi Ped., Bucureşti (1974)Google Scholar
  3. 3.
    Dinculeanu, N., Kluvánek, I.: On vector measures. Proc. Lond. Math. Soc. 17, 505–512 (1967)CrossRefGoogle Scholar
  4. 4.
    Dinculeanu, N., Lewis, P.W.: Regularity of Baire measures. Proc. Am. Math. Soc. 26, 92–94 (1970)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Dobrakov, I.: On submeasures, I. Diss. Math. 112, 5–35 (1974)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Gavriluţ, A.: Properties of regularity for multisubmeasures. An. Şt. Univ. Iaşi, Tomul L, s. I a f.2, 373–392 (2004)Google Scholar
  7. 7.
    Gavriluţ, A.: Regularity and o-continuity for multisubmeasures. An. Şt. Univ. Iaşi, Tomul L, s. I a f.2, 393–406 (2004)Google Scholar
  8. 8.
    Gavriluţ, A.: Proprietăţi de Regularitate a Multifunc ţiilor de Mulţime (in Romanian). Casa de Editură Venus, Iaşi (2006)Google Scholar
  9. 9.
    Gavriluţ, A.: Types of extensions for multisubmeasures. An. Şt. Univ. Iaşi f.1, 65–74 (2008)Google Scholar
  10. 10.
    Gavriluţ, A., Croitoru, A.: Pseudo-atoms and Darboux property for set multifunctions. Fuzzy Sets Syst. 161(22), 2897–2908 (2010)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Halmos, P.: Measure Theory. D. van Nostrand Company Inc., New York (1950)CrossRefGoogle Scholar
  12. 12.
    Khurana, S.S.: Extension and regularity of group-valued Baire measures. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astron. Phys. 22, 891–895 (1974)Google Scholar
  13. 13.
    Khurana, S.S.: Extensions of group-valued regular Borel measures. Math. Nachr. 97, 159–165 (1980)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Klimkin, V.M., Svistula, M.G.: Darboux property of a non-additive set function. Sb. Math. 192, 969–978 (2001)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Morales, P.: Regularity and extension of semigroup valued Baire measures. In: Proceeding conference Oberwolfach 1979. Lecture Notes in Mathematics, vol. 794. Springer, Berlin, 317–323 (1980)Google Scholar
  16. 16.
    Olejcek, V.: Darboux property of regular measures. Mat. Cas. 24(3), 283–288 (1974)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Pap, E.: On non-additive set functions. Atti. Sem. Mat. Fis. Univ. Modena 39, 345–360 (1991)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Pap, E.: Null-Additive Set Functions. Kluwer Academic Publishers, Dordrecht (1995)zbMATHGoogle Scholar
  19. 19.
    Precupanu, A.: Some properties of the (B − M)-regular multimeasures. An. Şt. Univ. Iaşi 34, 93–103 (1988)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Rådström, H.: An embedding theorem for spaces of convex set. Proc. Am. Math. Soc. 3, 165–169 (1952)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Sundaresan, K., Day, P.W.: Regularity of group-valued Baire and Borel measures. Proc. Am. Math. Soc. 36, 609–612 (1972)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Suzuki, H.: Atoms of fuzzy measures and fuzzy integrals. Fuzzy Sets Syst. 41, 329–342 (1991)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Wu, C., Bo, S.: Pseudo-atoms of fuzzy and non-fuzzy measures. Fuzzy Sets Syst. 158, 1258–1272 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alina Gavriluţ
    • 1
  • Ioan Mercheş
    • 2
  • Maricel Agop
    • 3
  1. 1.Faculty of MathematicsAlexandru Ioan Cuza UniversityIaşiRomania
  2. 2.Faculty of PhysicsAlexandru Ioan Cuza UniversityIaşiRomania
  3. 3.Physics Department, Gheorghe Asachi TechnicalUniversity of LasiIaşiRomania

Personalised recommendations