On a multifractal theory of motion in a non-differentiable space: Toward a possible multifractal theory of measure

  • Alina Gavriluţ
  • Ioan Mercheş
  • Maricel Agop


In this chapter, a multifractal theory of motion is built up and, moreover, a possible multifractal theory of measure is proposed.


  1. 1.
    Cresson, J., Adda, F.B.: Quantum derivatives and the Schrödinger equation. Chaos Solitons Fractals 19, 1323–1334 (2004)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Cristescu, C.P.: Dinamici Neliniare şi Haos. Fundamente Teoretice şi Aplicaţii (in Romanian). Romanian Academy Publishing House, Bucureşti (2008)Google Scholar
  3. 3.
    Mercheş, I., Agop, M.: Differentiability and Fractality in Dynamics of Physical Systems. World Scientific Publisher, Singapore (2016)zbMATHGoogle Scholar
  4. 4.
    Mandelbrot, B.: The Fractal Geometry of Nature. W.H. Freeman Publishers, New York (1982)zbMATHGoogle Scholar
  5. 5.
    Notalle, L.: Scale Relativity and Fractal Space-Time: A New Approach to Unifying Relativity and Quantum Mechanics. Imperial College Press, London (2011)CrossRefGoogle Scholar
  6. 6.
    Phillips, A.C.: Introduction to Quantum Mechanics. Wiley, New York (2003)Google Scholar
  7. 7.
    Schlichting, H.: Boundary Layer Theory. McGraw-Hill, New York (1970)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alina Gavriluţ
    • 1
  • Ioan Mercheş
    • 2
  • Maricel Agop
    • 3
  1. 1.Faculty of MathematicsAlexandru Ioan Cuza UniversityIaşiRomania
  2. 2.Faculty of PhysicsAlexandru Ioan Cuza UniversityIaşiRomania
  3. 3.Physics Department, Gheorghe Asachi TechnicalUniversity of LasiIaşiRomania

Personalised recommendations