Advertisement

Extended atomicity through non-differentiability and its physical implications

  • Alina Gavriluţ
  • Ioan Mercheş
  • Maricel Agop
Chapter

Abstract

In this chapter, atomicity is presented via quantum measure theory and some of its physical applications are highlighted. Precisely, the mathematical concept of (minimal) atomicity is extended from a physical perspective, based on the non-differentiability of motion curves.

References

  1. 1.
    Agahi, H., Mesiar, R., Babakhani, A.: Generalized expectation with general kernel on g-semirings and its applications. Rev. Real Acad. Cienc. Exact. Fís. Natur. Ser. A Mat. 111(3), 863–875 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Agop, M., Gavriluţ, A., Crumpei, G., Doroftei, B.: Informational non-differentiable entropy and uncertainty. Relations in complex systems. Entropy 16, 6042–6058 (2014)zbMATHGoogle Scholar
  3. 3.
    Agop, M., Gavriluţ, A., Rezuş, E.: Implications of Onicescu’s informational energy in some fundamental physical models. Int. J. Mod. Phys. B 29, 1550045, 19 pp. (2015). https://doi.org/10.1142/S0217979215500459 MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Agop, M., Gavriluţ, A., Ştefan, G., Doroftei, B.: Implications of non-differentiable entropy on a space-time manifold. Entropy 17, 2184–2197 (2015)CrossRefGoogle Scholar
  5. 5.
    Agop, M., Gavriluţ, A., Păun, V.P., Filipeanu, D., Luca, F.A., Grecea, C., Topliceanu, L.: Fractal information by means of harmonic mappings and some physical implications. Entropy 18, 160 (2016)CrossRefGoogle Scholar
  6. 6.
    Audenaert, K.M.R.: Subadditivity of q-entropies for q > 1. J. Math. Phys. 48, 083507 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Barbilian, D.: Die von einer Quantik induzierte Riemannsche Metrik . C. R. Acad. Roum. Sci. 2, 198 (1937)zbMATHGoogle Scholar
  8. 8.
    Boonsri, N., Saejung, S.: Some fixed point theorems for multivalued mappings in metric spaces. Rev. Real Acad. Cienc. Exact. Fís. Natur. Ser. A Mat. 111(2), 489–497 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Cavaliere, P., Ventriglia, F.: On nonatomicity for non-additive functions. J. Math. Anal. Appl. 415(1), 358–372 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Chiţescu, I.: Finitely purely atomic measures and \(\mathcal {L}^{p}\)-spaces. An. Univ. Bucureşti Şt. Nat. 24, 23–29 (1975)Google Scholar
  11. 11.
    Chiţescu, I.: Finitely purely atomic measures: coincidence and rigidity properties. Rend. Circ. Mat. Palermo (2) 50(3), 455–476 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Dinculeanu, N.: Measure Theory and Real Functions (in Romanian). Didactic and Pedagogical Publishing House, Bucharest (1964)Google Scholar
  13. 13.
    Drewnowski, L.: Topological rings of sets, continuous set functions, integration, I, II, III. Bull. Acad. Polon. Sci. 20, 269–276, 277–286, 439–445 (1972)Google Scholar
  14. 14.
    Flanders, H.: Differential Forms with Applications to the Physical Science. Dover Publication, New York (1989)zbMATHGoogle Scholar
  15. 15.
    Gavriluţ, A.: Non-atomicity and the Darboux property for fuzzy and non-fuzzy Borel/Baire multivalued set functions. Fuzzy Sets and Systems 160 (2009), 1308–1317. Erratum Fuzzy Sets Syst. 161, 2612–2613 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Gavriluţ, A.: Fuzzy Gould integrability on atoms. Iran. J. Fuzzy Syst. 8(3), 113–124 (2011)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Gavriluţ, A.: Regular Set Multifunctions. Pim Publishing House, Iaşi (2012)zbMATHGoogle Scholar
  18. 18.
    Gavriluţ, A., Agop, M.: An Introduction to the Mathematical World of Atomicity through a Physical Approach. ArsLonga Publishing House, Iaşi (2016)Google Scholar
  19. 19.
    Gavriluţ, A., Croitoru, A.: On the Darboux property in the multivalued case. Ann. Univ. Craiova Math. Comput. Sci. Ser. 35, 130–138 (2008)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Gavriluţ, A., Croitoru, A.: Non-atomicity for fuzzy and non-fuzzy multivalued set functions. Fuzzy Sets Syst. 160, 2106–2116 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Gavriluţ, A., Croitoru, A.: Pseudo-atoms and Darboux property for set multifunctions. Fuzzy Sets Syst. 161(22), 2897–2908 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Gavriluţ, A., Iosif, A., Croitoru, A.: The Gould integral in Banach lattices. Positivity 19(1), 65–82 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Gregori, V., Miñana, J.-J., Morillas, S., Sapena, A.: Cauchyness and convergence in fuzzy metric spaces. Rev. Real Acad. Cienc. Exact. Fís. Natur. Ser. A Mat. 111(1), 25–37 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Grigorovici, A., Băcăiţă, E.S., Păun, V.P., Grecea, C., Butuc, I., Agop, M., Popa, O.: Pairs generating as a consequence of the fractal entropy: theory and applications. Entropy 19, 128 (2017). https://doi.org/10.3390/e19030128 CrossRefGoogle Scholar
  25. 25.
    Gudder, S.: Quantum measure and integration theory. J. Math. Phys. 50, 123509 (2009). https://doi.org/10.1063/1.3267867 MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Gudder, S.: Quantum integrals and anhomomorphic logics, arXiv: quant-ph (0911.1572) (2009)Google Scholar
  27. 27.
    Gudder, S.: Quantum measure theory. Math. Slovaca 60, 681–700 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Gudder, S.: Quantum measures and the coevent interpretation. Rep. Math. Phys. 67, 137–156 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Gudder, S.: Quantum measures and integrals, arXiv:1105.3781 (2011)Google Scholar
  30. 30.
    Hartle, J.B.: The quantum mechanics of cosmology. In: Lectures at Winter School on Quantum Cosmology and Baby Universes, Jerusalem, Israel, Dec 27, 1990–Jan 4, 1990 (1990)Google Scholar
  31. 31.
    Hartle, J.B.: Spacetime quantum mechanics and the quantum mechanics of spacetime. In: Zinn-Justin, J., Julia, B. (eds.) Proceedings of the Les Houches Summer School on Gravitation and Quantizations, Les Houches, France, 6 Jul–1, Aug 1992. North-Holland, Amsterdam (1995), arXiv:gr-qc/9304006Google Scholar
  32. 32.
    Iannaccone, P.M., Khokha, M.: Fractal Geometry in Biological Systems: An Analitical Approach. CRC Press, New York (1995)Google Scholar
  33. 33.
    Jaynes, E.T.: The well posed problem. Found. Phys. 3, 477–493 (1973)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Khare, M., Singh, A.K.: Atoms and Dobrakov submeasures in effect algebras. Fuzzy Sets Syst. 159(9), 1123–1128 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Li, J., Mesiar, R., Pap, E.: Atoms of weakly null-additive monotone measures and integrals. Inf. Sci. 257, 183–192 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Li, J., Mesiar, R., Pap, E., Klement, E.P.: Convergence theorems for monotone measures. Fuzzy Sets Syst. 281, 103–127 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Mandelbrot, B.B.: The Fractal Geometry of Nature, Updated and augm. edn. W.H. Freeman, New York (1983)CrossRefGoogle Scholar
  38. 38.
    Mazilu, N., Agop, M.: Skyrmions. A Great Finishing Touch to Classical Newtonian Philosophy. World Philosophy Series. Nova Science Publishers, New York (2011)Google Scholar
  39. 39.
    Mercheş, I., Agop, M.: Differentiability and Fractality in Dynamics of Physical Systems. World Scientific, Singapore (2015)zbMATHCrossRefGoogle Scholar
  40. 40.
    Mesiar, R., Li, J., Ouyang, Y.: On the equality of integrals. Inf. Sci. 393, 82–90 (2017)CrossRefGoogle Scholar
  41. 41.
    Michel, O.D., Thomas, B.G.: Mathematical Modeling for Complex Fluids and Flows. Springer, New York (2012)zbMATHGoogle Scholar
  42. 42.
    Mihăileanu, M.: Differential, Projective and Analytical Geometry (in Romanian). Didactic and Pedagogical Publishing House, Bucharest (1972)Google Scholar
  43. 43.
    Mitchell, M.: Complexity: A Guided Tour. Oxford University Press, Oxford (2009)zbMATHGoogle Scholar
  44. 44.
    Nottale, L.: Scale Relativity and Fractal Space-Time. A New Approach to Unifying Relativity and Quantum Mechanics. Imperial College Press, London (2011)zbMATHCrossRefGoogle Scholar
  45. 45.
    Ouyang, Y., Li, J., Mesiar, R.: Relationship between the concave integrals and the pan-integrals on finite spaces. J. Math. Anal. Appl. 424, 975–987 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Pap, E.: The range of null-additive fuzzy and non-fuzzy measures . Fuzzy Sets Syst. 65(1), 105–115 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Pap, E.: Null-additive Set Functions. Mathematics and its Applications, vol. 337. Springer, Berlin (1995)Google Scholar
  48. 48.
    Pap, E.: Some Elements of the Classical Measure Theory. Chapter 2 in Handbook of Measure Theory, pp. 27–82. Elsevier, Amsterdam (2002)zbMATHCrossRefGoogle Scholar
  49. 49.
    Pap, E., Gavriluţ, A., Agop, M.: Atomicity via regularity for non-additive set multi functions. Soft Comput. (Foundations) 20, 4761–4766 (2016). https://doi.org/10.1007/s00500-015-2021-x zbMATHCrossRefGoogle Scholar
  50. 50.
    Phillips, A.C.: Introduction to Quantum Mechanics. Wiley, New York (2003)Google Scholar
  51. 51.
    Rao, K.P.S.B., Rao, M.B.: Theory of Charges. Academic, New York (1983)zbMATHGoogle Scholar
  52. 52.
    Salgado, R.: Some identities for the q-measure and its generalizations. Mod. Phys. Lett. A 17, 711–728 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. Elsevier Science, New York (1983). Republished in 2005 by Dover Publications, Inc., with a new preface, errata, notes, and supplementary referencesGoogle Scholar
  54. 54.
    Sorkin, R.D.: Quantum mechanics as quantum measure theory. Mod. Phys. Lett. A 9, 3119–3128 (1994), arXiv:gr-qc/9401003MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Sorkin, R.D.: Quantum measure theory and its interpretation. In: Feng, D.H., Hu, B.-L. (eds.) Quantum Classical Correspondence: Proceedings of the 4th Drexel Symposium on Quantum Non-integrability, pp. 229–251. International Press, Cambridge (1997)Google Scholar
  56. 56.
    Sorkin, R.: Quantum dynamics without the wave function. J. Phys. A Math. Theor. 40, 3207–3231 (2007)zbMATHCrossRefGoogle Scholar
  57. 57.
    Surya, S., Waldlden, P.: Quantum covers in q-measure theory, arXiv: quant-ph 0809.1951 (2008)Google Scholar
  58. 58.
    Susskind, L.: Copenhagen vs Everett teleportation, and ER ≡ EPR, arXiv: 1604.02589v2 (23 April 2016)Google Scholar
  59. 59.
    Susskind, L.: ER ≡ EPR,GHZ, and the consistency of quantum measurements. Fortsch. Phys. 64, 72 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Suzuki, H.: Atoms of fuzzy measures and fuzzy integrals. Fuzzy Sets Syst. 41, 329–342 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    Wu, C., Bo, S.: Pseudo-atoms of fuzzy and non-fuzzy measures. Fuzzy Sets Syst. 158, 1258–1272 (2007)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alina Gavriluţ
    • 1
  • Ioan Mercheş
    • 2
  • Maricel Agop
    • 3
  1. 1.Faculty of MathematicsAlexandru Ioan Cuza UniversityIaşiRomania
  2. 2.Faculty of PhysicsAlexandru Ioan Cuza UniversityIaşiRomania
  3. 3.Physics Department, Gheorghe Asachi TechnicalUniversity of LasiIaşiRomania

Personalised recommendations