Extended atomicity through non-differentiability and its physical implications

  • Alina Gavriluţ
  • Ioan Mercheş
  • Maricel Agop


In this chapter, atomicity is presented via quantum measure theory and some of its physical applications are highlighted. Precisely, the mathematical concept of (minimal) atomicity is extended from a physical perspective, based on the non-differentiability of motion curves.


  1. 1.
    Agahi, H., Mesiar, R., Babakhani, A.: Generalized expectation with general kernel on g-semirings and its applications. Rev. Real Acad. Cienc. Exact. Fís. Natur. Ser. A Mat. 111(3), 863–875 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Agop, M., Gavriluţ, A., Crumpei, G., Doroftei, B.: Informational non-differentiable entropy and uncertainty. Relations in complex systems. Entropy 16, 6042–6058 (2014)zbMATHGoogle Scholar
  3. 3.
    Agop, M., Gavriluţ, A., Rezuş, E.: Implications of Onicescu’s informational energy in some fundamental physical models. Int. J. Mod. Phys. B 29, 1550045, 19 pp. (2015). MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Agop, M., Gavriluţ, A., Ştefan, G., Doroftei, B.: Implications of non-differentiable entropy on a space-time manifold. Entropy 17, 2184–2197 (2015)CrossRefGoogle Scholar
  5. 5.
    Agop, M., Gavriluţ, A., Păun, V.P., Filipeanu, D., Luca, F.A., Grecea, C., Topliceanu, L.: Fractal information by means of harmonic mappings and some physical implications. Entropy 18, 160 (2016)CrossRefGoogle Scholar
  6. 6.
    Audenaert, K.M.R.: Subadditivity of q-entropies for q > 1. J. Math. Phys. 48, 083507 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Barbilian, D.: Die von einer Quantik induzierte Riemannsche Metrik . C. R. Acad. Roum. Sci. 2, 198 (1937)zbMATHGoogle Scholar
  8. 8.
    Boonsri, N., Saejung, S.: Some fixed point theorems for multivalued mappings in metric spaces. Rev. Real Acad. Cienc. Exact. Fís. Natur. Ser. A Mat. 111(2), 489–497 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Cavaliere, P., Ventriglia, F.: On nonatomicity for non-additive functions. J. Math. Anal. Appl. 415(1), 358–372 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Chiţescu, I.: Finitely purely atomic measures and \(\mathcal {L}^{p}\)-spaces. An. Univ. Bucureşti Şt. Nat. 24, 23–29 (1975)Google Scholar
  11. 11.
    Chiţescu, I.: Finitely purely atomic measures: coincidence and rigidity properties. Rend. Circ. Mat. Palermo (2) 50(3), 455–476 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Dinculeanu, N.: Measure Theory and Real Functions (in Romanian). Didactic and Pedagogical Publishing House, Bucharest (1964)Google Scholar
  13. 13.
    Drewnowski, L.: Topological rings of sets, continuous set functions, integration, I, II, III. Bull. Acad. Polon. Sci. 20, 269–276, 277–286, 439–445 (1972)Google Scholar
  14. 14.
    Flanders, H.: Differential Forms with Applications to the Physical Science. Dover Publication, New York (1989)zbMATHGoogle Scholar
  15. 15.
    Gavriluţ, A.: Non-atomicity and the Darboux property for fuzzy and non-fuzzy Borel/Baire multivalued set functions. Fuzzy Sets and Systems 160 (2009), 1308–1317. Erratum Fuzzy Sets Syst. 161, 2612–2613 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Gavriluţ, A.: Fuzzy Gould integrability on atoms. Iran. J. Fuzzy Syst. 8(3), 113–124 (2011)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Gavriluţ, A.: Regular Set Multifunctions. Pim Publishing House, Iaşi (2012)zbMATHGoogle Scholar
  18. 18.
    Gavriluţ, A., Agop, M.: An Introduction to the Mathematical World of Atomicity through a Physical Approach. ArsLonga Publishing House, Iaşi (2016)Google Scholar
  19. 19.
    Gavriluţ, A., Croitoru, A.: On the Darboux property in the multivalued case. Ann. Univ. Craiova Math. Comput. Sci. Ser. 35, 130–138 (2008)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Gavriluţ, A., Croitoru, A.: Non-atomicity for fuzzy and non-fuzzy multivalued set functions. Fuzzy Sets Syst. 160, 2106–2116 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Gavriluţ, A., Croitoru, A.: Pseudo-atoms and Darboux property for set multifunctions. Fuzzy Sets Syst. 161(22), 2897–2908 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Gavriluţ, A., Iosif, A., Croitoru, A.: The Gould integral in Banach lattices. Positivity 19(1), 65–82 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Gregori, V., Miñana, J.-J., Morillas, S., Sapena, A.: Cauchyness and convergence in fuzzy metric spaces. Rev. Real Acad. Cienc. Exact. Fís. Natur. Ser. A Mat. 111(1), 25–37 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Grigorovici, A., Băcăiţă, E.S., Păun, V.P., Grecea, C., Butuc, I., Agop, M., Popa, O.: Pairs generating as a consequence of the fractal entropy: theory and applications. Entropy 19, 128 (2017). CrossRefGoogle Scholar
  25. 25.
    Gudder, S.: Quantum measure and integration theory. J. Math. Phys. 50, 123509 (2009). MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Gudder, S.: Quantum integrals and anhomomorphic logics, arXiv: quant-ph (0911.1572) (2009)Google Scholar
  27. 27.
    Gudder, S.: Quantum measure theory. Math. Slovaca 60, 681–700 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Gudder, S.: Quantum measures and the coevent interpretation. Rep. Math. Phys. 67, 137–156 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Gudder, S.: Quantum measures and integrals, arXiv:1105.3781 (2011)Google Scholar
  30. 30.
    Hartle, J.B.: The quantum mechanics of cosmology. In: Lectures at Winter School on Quantum Cosmology and Baby Universes, Jerusalem, Israel, Dec 27, 1990–Jan 4, 1990 (1990)Google Scholar
  31. 31.
    Hartle, J.B.: Spacetime quantum mechanics and the quantum mechanics of spacetime. In: Zinn-Justin, J., Julia, B. (eds.) Proceedings of the Les Houches Summer School on Gravitation and Quantizations, Les Houches, France, 6 Jul–1, Aug 1992. North-Holland, Amsterdam (1995), arXiv:gr-qc/9304006Google Scholar
  32. 32.
    Iannaccone, P.M., Khokha, M.: Fractal Geometry in Biological Systems: An Analitical Approach. CRC Press, New York (1995)Google Scholar
  33. 33.
    Jaynes, E.T.: The well posed problem. Found. Phys. 3, 477–493 (1973)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Khare, M., Singh, A.K.: Atoms and Dobrakov submeasures in effect algebras. Fuzzy Sets Syst. 159(9), 1123–1128 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Li, J., Mesiar, R., Pap, E.: Atoms of weakly null-additive monotone measures and integrals. Inf. Sci. 257, 183–192 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Li, J., Mesiar, R., Pap, E., Klement, E.P.: Convergence theorems for monotone measures. Fuzzy Sets Syst. 281, 103–127 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Mandelbrot, B.B.: The Fractal Geometry of Nature, Updated and augm. edn. W.H. Freeman, New York (1983)CrossRefGoogle Scholar
  38. 38.
    Mazilu, N., Agop, M.: Skyrmions. A Great Finishing Touch to Classical Newtonian Philosophy. World Philosophy Series. Nova Science Publishers, New York (2011)Google Scholar
  39. 39.
    Mercheş, I., Agop, M.: Differentiability and Fractality in Dynamics of Physical Systems. World Scientific, Singapore (2015)zbMATHCrossRefGoogle Scholar
  40. 40.
    Mesiar, R., Li, J., Ouyang, Y.: On the equality of integrals. Inf. Sci. 393, 82–90 (2017)CrossRefGoogle Scholar
  41. 41.
    Michel, O.D., Thomas, B.G.: Mathematical Modeling for Complex Fluids and Flows. Springer, New York (2012)zbMATHGoogle Scholar
  42. 42.
    Mihăileanu, M.: Differential, Projective and Analytical Geometry (in Romanian). Didactic and Pedagogical Publishing House, Bucharest (1972)Google Scholar
  43. 43.
    Mitchell, M.: Complexity: A Guided Tour. Oxford University Press, Oxford (2009)zbMATHGoogle Scholar
  44. 44.
    Nottale, L.: Scale Relativity and Fractal Space-Time. A New Approach to Unifying Relativity and Quantum Mechanics. Imperial College Press, London (2011)zbMATHCrossRefGoogle Scholar
  45. 45.
    Ouyang, Y., Li, J., Mesiar, R.: Relationship between the concave integrals and the pan-integrals on finite spaces. J. Math. Anal. Appl. 424, 975–987 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Pap, E.: The range of null-additive fuzzy and non-fuzzy measures . Fuzzy Sets Syst. 65(1), 105–115 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Pap, E.: Null-additive Set Functions. Mathematics and its Applications, vol. 337. Springer, Berlin (1995)Google Scholar
  48. 48.
    Pap, E.: Some Elements of the Classical Measure Theory. Chapter 2 in Handbook of Measure Theory, pp. 27–82. Elsevier, Amsterdam (2002)zbMATHCrossRefGoogle Scholar
  49. 49.
    Pap, E., Gavriluţ, A., Agop, M.: Atomicity via regularity for non-additive set multi functions. Soft Comput. (Foundations) 20, 4761–4766 (2016). zbMATHCrossRefGoogle Scholar
  50. 50.
    Phillips, A.C.: Introduction to Quantum Mechanics. Wiley, New York (2003)Google Scholar
  51. 51.
    Rao, K.P.S.B., Rao, M.B.: Theory of Charges. Academic, New York (1983)zbMATHGoogle Scholar
  52. 52.
    Salgado, R.: Some identities for the q-measure and its generalizations. Mod. Phys. Lett. A 17, 711–728 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. Elsevier Science, New York (1983). Republished in 2005 by Dover Publications, Inc., with a new preface, errata, notes, and supplementary referencesGoogle Scholar
  54. 54.
    Sorkin, R.D.: Quantum mechanics as quantum measure theory. Mod. Phys. Lett. A 9, 3119–3128 (1994), arXiv:gr-qc/9401003MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Sorkin, R.D.: Quantum measure theory and its interpretation. In: Feng, D.H., Hu, B.-L. (eds.) Quantum Classical Correspondence: Proceedings of the 4th Drexel Symposium on Quantum Non-integrability, pp. 229–251. International Press, Cambridge (1997)Google Scholar
  56. 56.
    Sorkin, R.: Quantum dynamics without the wave function. J. Phys. A Math. Theor. 40, 3207–3231 (2007)zbMATHCrossRefGoogle Scholar
  57. 57.
    Surya, S., Waldlden, P.: Quantum covers in q-measure theory, arXiv: quant-ph 0809.1951 (2008)Google Scholar
  58. 58.
    Susskind, L.: Copenhagen vs Everett teleportation, and ER ≡ EPR, arXiv: 1604.02589v2 (23 April 2016)Google Scholar
  59. 59.
    Susskind, L.: ER ≡ EPR,GHZ, and the consistency of quantum measurements. Fortsch. Phys. 64, 72 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Suzuki, H.: Atoms of fuzzy measures and fuzzy integrals. Fuzzy Sets Syst. 41, 329–342 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    Wu, C., Bo, S.: Pseudo-atoms of fuzzy and non-fuzzy measures. Fuzzy Sets Syst. 158, 1258–1272 (2007)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alina Gavriluţ
    • 1
  • Ioan Mercheş
    • 2
  • Maricel Agop
    • 3
  1. 1.Faculty of MathematicsAlexandru Ioan Cuza UniversityIaşiRomania
  2. 2.Faculty of PhysicsAlexandru Ioan Cuza UniversityIaşiRomania
  3. 3.Physics Department, Gheorghe Asachi TechnicalUniversity of LasiIaşiRomania

Personalised recommendations