Advertisement

Several hypertopologies: A short overview

  • Alina Gavriluţ
  • Ioan Mercheş
  • Maricel Agop
Chapter

Abstract

This chapter presents a short overview on several well-known hypertopologies is made.

References

  1. 1.
    Andres, J., Fiser, J.: Metric and topological multivalued fractals. Int. J. Bifur. Chaos Appl. Sci. Eng. 14(4), 1277–1289 (2004)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Andres, J., Rypka, M.: Multivalued fractals and hyperfractals. Int. J. Bifur. Chaos Appl. Sci. Eng. 22(1), 1250009 (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Apreutesei, G.: Set convergence and the class of compact subsets. An. Şt. Univ. Iaşi XLVII, 263–276 (2001)Google Scholar
  4. 4.
    Apreutesei, G.: Families of subsets and the coincidence of hypertopologies. An. Şt. Univ. Iaşi XLIX, 1–18 (2003)Google Scholar
  5. 5.
    Banakh, T., Novosad, N.: Micro and macro fractals generated by multi-valued dynamical systems, arXiv: 1304.7529v1 [math.GN] (2013)Google Scholar
  6. 6.
    Beer, G.: Topologies on Closed and Closed Convex Sets. Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht (1993)CrossRefGoogle Scholar
  7. 7.
    Beer, G.: Wijsman convergence: a survey. Set-Valued Anal. 2(1–2), 77–94 (1994)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Beer, G., Lechicki, A., Levi, S., Naimpally, S.: Distance functionals and suprema of hyperspace topologies. Ann. Mat. Pura Appl. (4) 162, 367–381 (1992)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Brown, S.: Memory and mathesis: for a topological approach to psychology. Theory Cult. Soc. 29(4–5), 137–164 (2012)CrossRefGoogle Scholar
  10. 10.
    Costantini, C., Levi, S., Zieminska, J.: Metrics that generate the same hyperspace convergence. Set-Valued Anal. 1, 141–157 (1993)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Di Lorenzo, P., Di Maio, G.: The Hausdorff metric in the melody space: a new approach to melodic similarity. In: The 9th International Conference on Music Perception and Cognition, Alma Mater Studiorum University of Bologna, August 22–26 (2006)Google Scholar
  12. 12.
    Di Maio, G., Naimpally, S.: Comparison of hypertopologies. Rend. Ist. Mat. Univ. Trieste 22, 140–161 (1990)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Frolík, Z.: Concerning topological convergence of sets. Czechoskovak Math. J. 10, 168–180 (1960)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Gavriluţ, A.: Regular Set Multifunctions. PIM Publishing House, Iaşi (2012)zbMATHGoogle Scholar
  15. 15.
    Gavriluţ, A., Apreutesei, G.: Regularity aspects of non-additive set multifunctions. Fuzzy Sets Syst. 304, 94–109 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gavriluţ, A., Agop, M.: A mathematical-physical approach on regularity in hit-and-miss hypertopologies for fuzzy set multifunctions. Math. Sci. 9, 181–188 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hazewinkel, M.: Encyclopaedia of Mathematics, Supplement III, vol. 13. Kluwer Academic Publishers, Dordrecht (2001)zbMATHGoogle Scholar
  18. 18.
    Hu, S., Papageorgiou, N.S.: Handbook of Multivalued Analysis, vol. I. Kluwer Academic Publishers, Dordrecht (1997)CrossRefGoogle Scholar
  19. 19.
    Kunze, H., La Torre, D., Mendivil, F., Vrscay, E.R.: Fractal Based Methods in Analysis. Springer, New York (2012)CrossRefGoogle Scholar
  20. 20.
    Lechicki, A., Levi, S.: Wijsman convergence in the hyperspace of a metric space. Boll. Unione Mat. Ital. (7) B.l 7, 439–451 (1987)Google Scholar
  21. 21.
    Precupanu, A., Precupanu, T., Turinici, M., Apreutesei Dumitriu, N., Stamate, C., Satco, B.R., Văideanu, C., Apreutesei, G., Rusu, D., Gavrilu ţ, A.C., Apetrii, M.: Modern Directions in Multivalued Analysis and Optimization Theory (in Romanian). Venus Publishing House, Iaşi (2006)Google Scholar
  22. 22.
    Precupanu, A., Gavriluţ, A.: Set-valued Lusin type theorem for null-null-additive set multifunctions, Fuzzy Sets Syst. 204, 106–116 (2012)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Sharma, P., Nagar, A.: Topological dynamics on hyperspaces. Appl. Gen. Topol. 11(1), 1–19 (2010)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Solecki, S.: Gδ ideals of compact sets. J. Eur. Math. Soc. 13, 853–882 (2011)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Wicks, K.R.: Fractals and Hyperspaces. Springer, Berlin (1991)CrossRefGoogle Scholar
  26. 26.
    Wijsman, R.: Convergence of sequences of convex sets, cones and functions. II. Trans. Amer. Math. Soc. 123(1), 32–45 (1966)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alina Gavriluţ
    • 1
  • Ioan Mercheş
    • 2
  • Maricel Agop
    • 3
  1. 1.Faculty of MathematicsAlexandru Ioan Cuza UniversityIaşiRomania
  2. 2.Faculty of PhysicsAlexandru Ioan Cuza UniversityIaşiRomania
  3. 3.Physics Department, Gheorghe Asachi TechnicalUniversity of LasiIaşiRomania

Personalised recommendations