Advertisement

Models for Incomplete Channel Knowledge

  • Andreas Gründinger
Chapter
Part of the Foundations in Signal Processing, Communications and Networking book series (SIGNAL, volume 22)

Abstract

The quality of the channel knowledge is generally asymmetric at the receivers’ and the transmitter’s side of a vector BC. The receivers can exploit accurate knowledge about the received signals’ autocorrelation and variance for equalization and decoding. Achieving a similar quality of transmitter channel knowledge for downlink wireless communication is unrealistic when the channel is subject to fading (Goldsmith, Wireless communications. Cambridge University Press, Cambridge, 2005, Chapter 2). Transmitter CSI is gained via pilot-based training (e.g., see Tong et al. (IEEE Signal Process Mag 21:12, 2004)), either in the uplink for time division duplex (TDD) systems or in the downlink for systems in frequency division duplex (FDD) mode with feedback. This results in errors between the channel and the transmitter’s estimate. For TDD systems, the errors are due to imperfect uplink channel estimation and delayed utilization of the estimates. For the FDD model, the errors stem from estimation at the receivers and the limited feedback to the transmitter. Feedback delays additionally degrade the channel information.

References

  1. 1.
    D. Tse, P. Viswanath, Fundamentals of Wireless Communications, 4th edn. (Cambridge University Press, New York, NY, 2008)zbMATHGoogle Scholar
  2. 28.
    M. Matthaiou, G. Alexandropoulos, H.Q. Ngo, E. Larsson, Analytic framework for the effective rate of MISO fading channels. IEEE Trans. Commun. 60(6), 1741 (2012)Google Scholar
  3. 36.
    K.Y. Wang, A.C. So, T.H. Chang, W.K. Ma, C.Y. Chi, Outage constrained robust transmit optimization for multiuser MISO downlinks: tractable approximations by conic optimization. IEEE Trans. Signal Process. 62(21), 5690 (2014)Google Scholar
  4. 41.
    F. Dietrich, Robust Signal Processing for Wireless Communications (Springer, New York, 2007)zbMATHGoogle Scholar
  5. 43.
    M. Joham, P. Castro, W. Utschick, L. Castedo, Robust precoding with limited feedback design based on precoding MSE for MU-MISO systems. IEEE Trans. Signal Process. 60(6), 3101 (2012)Google Scholar
  6. 52.
    D. Christopoulos, S. Chatzinotas, G. Zheng, J. Grotz, B. Ottersten, Linear and nonlinear techniques for multibeam joint processing in satellite communications. EURASIP J. Wirel. Commun. Netw. 1(162), 1 (2012)Google Scholar
  7. 59.
    P.D. Arapoglou, E. Michailidis, A. Panagopoulos, A. Kanatas, R. Prieto-Cerdeira, The land mobile earth-space channel. IEEE Veh. Technol. Mag. 6(2), 44 (2011)Google Scholar
  8. 128.
    B. Hassibi, B.M. Hochwald, How much training is needed in multiple-antenna wireless links?. IEEE Trans. Inf. Theory 49(4), 951 (2003)Google Scholar
  9. 129.
    N. Jindal, MIMO broadcast channels with finite-rate feedback. IEEE Trans. Inf. Theory 52(11), 5045 (2006)Google Scholar
  10. 133.
    T. Yoo, A. Goldsmith, Capacity and power allocation for fading MIMO channels with channel estimation error. IEEE Trans. Inf. Theory 52(5), 2203 (2006)Google Scholar
  11. 175.
    A. Goldsmith, Wireless Communications (Cambridge University Press, Cambridge, 2005)CrossRefGoogle Scholar
  12. 176.
    L. Tong, B. Sadler, M. Dong, Pilot-assisted wireless transmissions: general model, design criteria, and signal processing. IEEE Signal Process. Mag. 21(6), 12 (2004)Google Scholar
  13. 177.
    D.S. Shiu, G.J. Foschini, M.J. Gans, J.M. Kahn, Fading correlation and its effect on the capacity of multielement antenna systems. IEEE Trans. Commun. 48(3), 502 (2000)Google Scholar
  14. 178.
    M. Ding, S.D. Blostein, Maximum mutual information design for MIMO systems with imperfect channel knowledge. IEEE Trans. Inf. Theory 56(10), 4793 (2010)Google Scholar
  15. 179.
    M. Castaneda Garcia, A. Mezghani, J. Nossek, Design of single user limited feedback systems. IEEE Trans. Wirel. Commun. 13(10), 5812 (2014)Google Scholar
  16. 180.
    A. Coulson, A. Williamson, R. Vaughan, A statistical basis for lognormal shadowing effects in multipath fading channels. IEEE Trans. Commun. 46(4), 494 (1998)Google Scholar
  17. 181.
    A. Goldsmith, L. Greenstein, G. Foschini, Error statistics of real-time power measurements in cellular channels with multipath and shadowing. IEEE Trans. Veh. Technol. 43(3), 439 (1994)Google Scholar
  18. 182.
    J. Roh, B. Rao, Efficient feedback methods for MIMO channels based on parameterization. IEEE Trans. Wirel. Commun. 6(1), 282 (2007)Google Scholar
  19. 183.
    D. Hammarwall, M. Bengtsson, B. Ottersten, Acquiring partial CSI for spatially selective transmission by instantaneous channel norm feedback. IEEE Trans. Signal Process. 56(3), 1188 (2008)Google Scholar
  20. 184.
    E. Björnson, D. Hammarwall, B. Ottersten, Exploiting quantized channel norm feedback through conditional statistics in arbitrarily correlated MIMO systems. IEEE Trans. Signal Process. 57(10), 4027 (2009)Google Scholar
  21. 185.
    F. Dietrich, W. Utschick, Pilot-assisted channel estimation based on second-order statistics. IEEE Trans. Signal Process. 53(3), 1178 (2005)Google Scholar
  22. 186.
    M. Vanderveen, A.J. van der Veen, A. Paulraj, Estimation of multipath parameters in wireless communications. IEEE Trans. Signal Process. 46(3), 682 (1998)Google Scholar
  23. 187.
    T. Kürner, D. Cichon, W. Wiesbeck, Concepts and results for 3D digital terrain-based wave propagation models: an overview. IEEE J. Sel. Areas Commun. 11(7), 1002 (1993)Google Scholar
  24. 188.
    K. Remley, H. Anderson, A. Weisshar, Improving the accuracy of ray-tracing techniques for indoor propagation modeling. IEEE Trans. Veh. Technol. 49(6), 2350 (2000)Google Scholar
  25. 189.
    J. Tarng, W.S. Liu, Y.F. Huang, J.M. Huang, A novel and efficient hybrid model of radio multipath-fading channels in indoor environments. IEEE Trans. Antennas Propag. 51(3), 585 (2003)Google Scholar
  26. 190.
    K. Rizk, J. Wagen, F. Gardiol, Two-dimensional ray-tracing modeling for propagation prediction in microcellular environments. IEEE Trans. Veh. Technol. 46(2), 508 (1997)Google Scholar
  27. 191.
    C. Tzaras, B. Evans, S. Saunders, Physical-statistical analysis of land mobile-satellite channel. Electron. Lett. 34(13), 1355 (1998)Google Scholar
  28. 193.
    A. Lehner, A. Steingass, Time series multipath modeling of suburban environments in landmobile satellite navigation, in Proceedings of the 2nd European Conference on Antennas and Propagation EuCAP (2007)Google Scholar
  29. 194.
    E. Larsson, P. Stoica, Space-Time Block Coding for Wireless Communications (Cambridge University Press, Cambridge, 2003)CrossRefGoogle Scholar
  30. 195.
    S.M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory (Prentice Hall, New Jersey, NJ, 1993)Google Scholar
  31. 196.
    C. Farsakh, J. Nossek, Spatial covariance based downlink beamforming in an SDMA mobile radio system. IEEE Trans. Commun. 46(11), 1497 (1998)Google Scholar
  32. 197.
    Y.C. Liang, F. Chin, Downlink channel covariance matrix (DCCM) estimation and its applications in wireless DS-CDMA systems. IEEE J. Sel. Areas Commun. 19(2), 222 (2001)Google Scholar
  33. 198.
    D. Love, R. Heath, W. Santipach, M. Honig, What is the value of limited feedback for MIMO channels?. IEEE Commun. Mag. 42(10), 54 (2004)Google Scholar
  34. 199.
    C.K. Au-Yeung, D. Love, On the performance of random vector quantization limited feedback beamforming in a MISO system. IEEE Trans. Wirel. Commun. 6(2), 458 (2007)Google Scholar
  35. 200.
    D. Love, R. Heath, V. Lau, D. Gesbert, B. Rao, M. Andrews, An overview of limited feedback in wireless communication systems. IEEE J. Sel. Areas Commun. 26(8), 1341 (2008)Google Scholar
  36. 201.
    K. Mukkavilli, A. Sabharwal, E. Erkip, B. Aazhang, On beamforming with finite rate feedback in multiple-antenna systems. IEEE Trans. Inf. Theory 49(10), 2562 (2003)Google Scholar
  37. 202.
    T. Zemen, C. Mecklenbräuker, Time-variant channel estimation using discrete prolate spheroidal sequences. IEEE Trans. Signal Process. 53(9), 3597 (2005)Google Scholar
  38. 203.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, 1st edn. (Dover, New York, 1964)zbMATHGoogle Scholar
  39. 204.
    A. Panagopoulos, P.D. Arapoglou, P. Cottis, Satellite communications at Ku, Ka, and V bands: propagation impairments and mitigation techniques. IEEE Commun. Surv. Tutorials 6(3), 2 (2004)Google Scholar
  40. 205.
    ITU-R Recommendation P.618-11. Propagation data and prediction methods required for the design of earth-space telecommunication systems, Geneva (2013), http://www.itu.int/rec/R-REC-P.618/en
  41. 206.
    D. Christopoulos, S. Chatzinotas, M. Matthaiou, B. Ottersten, Capacity analysis of multibeam joint decoding over composite satellite channels, in Proceedings of the 45th Asilomar Conference on Signals, Systems, and Computers (2011), pp. 1795–1799Google Scholar
  42. 207.
    M. Nakagami, The m-distribution—a general formula of intensity distribution of rapid fading, in Statistical Methods in Radio Wave Propagation, ed. by W. Hoffman (Pergamon, Oxford, 1960), pp. 3–36CrossRefGoogle Scholar
  43. 208.
    N. Beaulieu, C. Cheng, Efficient nakagami-m fading channel simulation. IEEE Trans. Veh. Technol. 54(2), 413 (2005)Google Scholar
  44. 209.
    A. Abdi, W. Lau, M.S. Alouini, M. Kaveh, A new simple model for land mobile satellite channels: first- and second-order statistics. IEEE Trans. Wirel. Commun. 2(3), 519 (2003)Google Scholar
  45. 210.
    J. Griffin, R. Guy, Zoom antennas for multiple spotbeam coverage of Europe, in Proceedings of the IEE Colloquium on Satellite Antenna Technology in the 21st Century (1991)Google Scholar
  46. 211.
    H.O. Georgii, Stochastik: Einführung in die Wahrscheinlichkeitstheorie und Statistik, 4th edn. (De Gruyter, Berlin, 2009)CrossRefGoogle Scholar
  47. 212.
    M. Nicoli, O. Simeone, U. Spagnolini, Multislot estimation of fast-varying space-time communication channels. IEEE Trans. Signal Process. 51(5), 1184 (2003)Google Scholar
  48. 213.
    D. Neumann, M. Joham, L. Weiland, W. Utschick, Low-complexity computation of LMMSE channel estimates in massive MIMO, in Proceedings of the 19th International ITG Workshop on Smart Antennas WSA (2015)Google Scholar
  49. 214.
    B. Yang, Projection approximation subspace tracking. IEEE Trans. Signal Process. 43(1), 95 (1995)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Andreas Gründinger
    • 1
  1. 1.ErgoldingGermany

Personalised recommendations