Data and Knowledge: An Interdisciplinary Approach for Air Quality Forecast

  • Cheng FengEmail author
  • Wendong Wang
  • Ye Tian
  • Xiangyang Gong
  • Xirong Que
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11775)


Air pollution has become a critical problem in rapidly developing countries. Prior domain knowledge combined with data mining offers new ideas for air quality prediction. In this paper, we propose an interdisciplinary approach for air quality forecast based on data mining and air mass trajectory analysis. The prediction model is composed of a temporal predictor based on local factors, a spatial predictor based on geographical factors, an air mass predictor tracking air pollutants transport corridors and an aggregator for final prediction. Experimental results based on real world data show that the cross-domain data mining method can significantly improve the prediction accuracy compared with other baselines, especially in the period of severe pollution.


Air quality prediction Machine learning Data and knowledge Interdisciplinary approach 



This work was supported by National Natural Science Foundation of China (Grant No.61602051).


  1. 1.
    Zhang, B., et al.: Learning-based energy-efficient data collection by unmannedvehicles in smart cities. IEEE Trans. Industr. Inf. 14(4), 1666–1676 (2018)CrossRefGoogle Scholar
  2. 2.
    Feng, C., et al.: Estimate air quality based on mobile crowd sensing and big data. IEEE WoWMoM (2017)Google Scholar
  3. 3.
    Stadlober, E., et al.: Quality and performance of a PM10 daily forecasting model. Atmos. Environ. 42(6), 1098–1109 (2008)CrossRefGoogle Scholar
  4. 4.
    Gao, H., et al.: A survey of incentive mechanisms for participatory sensing. IEEE Commun. Surv. Tutorials (2017)Google Scholar
  5. 5.
    Djalalova, I., et al.: PM2.5 analog forecast and Kalman filter post-processing for the community multiscale air quality (CMAQ) model. Atmos. Environ. 108, 76–87 (2015)CrossRefGoogle Scholar
  6. 6.
    Chen, J., et al.: Smog disaster forecasting using social web data and physical sensor data. In: IEEE Big Data (2015)Google Scholar
  7. 7.
    Tang, J., et al.: Extreme learning machine for multilayer perceptron. IEEE Trans. Neural Networks Learn. Syst. 27(4), 809–821 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Buehner, M.J., et al.: Four-dimensional ensemble-variational data assimilation for global deterministic weather prediction. Nonlinear Process. Geophys. 20(5), 669–682 (2013)CrossRefGoogle Scholar
  9. 9.
    Perez, P., et al.: An integrated neural network model for PM10 forecasting. Atmos. Environ. 40(16), 2845–2851 (2006)CrossRefGoogle Scholar
  10. 10.
    Kota, S.H., et al.: Evaluation of on-road vehicle CO and NO\(_{x}\) National Emission Inventories using an urban-scale source-oriented air quality model. Atmos. Environ. 82, 99–108 (2014)CrossRefGoogle Scholar
  11. 11.
    Chen, T., et al.: Xgboost: a scalable tree boosting system. In: ACM SIGKDD International Conference (2016)Google Scholar
  12. 12.
    Feng, X., et al.: Formation and dominant factors of haze pollution over Beijing and its peripheral areas in winter. Atmos. Pollut. Res. 5(3), 528–538 (2014)CrossRefGoogle Scholar
  13. 13.
    Morelli, X., et al.: Air pollution, health and social deprivation: a fine-scalerisk assessment. Environ. Res. 147, 59–70 (2016)CrossRefGoogle Scholar
  14. 14.
    Zheng, Y., et al.: U-air: When urban air quality inference meets big data. In: ACM SIGKDD International Conference (2013)Google Scholar
  15. 15.
    Zheng, Y., et al.: Forecasting fine-grained air quality based on big data. In: ACM SIGKDD International Conference (2015)Google Scholar
  16. 16.
    Qi, Z., et al.: Deep air learning: Interpolation, prediction, and feature analysis of air quality. IEEE Trans. Knowl. Data Eng. 30(12), 2285–2297 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Cheng Feng
    • 1
    Email author
  • Wendong Wang
    • 1
  • Ye Tian
    • 1
  • Xiangyang Gong
    • 1
  • Xirong Que
    • 1
  1. 1.State Key Lab of Networking and Switching TechnologyBeijing University of Posts and TelecommunicationsBeijingChina

Personalised recommendations