Advertisement

Understanding Decision Model and Notation: DMN Research Directions and Trends

  • Krzysztof KluzaEmail author
  • Weronika T. Adrian
  • Piotr Wiśniewski
  • Antoni Ligęza
Conference paper
  • 866 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11775)

Abstract

Decision Model and Notation provides a modeling notation for decisions, supports decision management, and business rules specification. In this paper, we identify research directions concerning DMN standard, outline classification of DMN research areas and perspectives of this relatively new formalism.

Keywords

Decision Model and Notation (DMN) Decision modeling Research directions 

References

  1. 1.
    OMG: Decision Model and Notation (DMN). Version 1.1. Technical report formal/16-06-01, Object Management Group (2016)Google Scholar
  2. 2.
    Linehan, M., de Sainte Marie, C.: The relationship of decision model and notation (DMN) to SBVR and BPMN. Bus. Rules J. 12(6) (2011) Google Scholar
  3. 3.
    Biard, T., Le Mauff, A., Bigand, M., Bourey, J.-P.: Separation of decision modeling from business process modeling using new “Decision Model and Notation” (DMN) for automating operational decision-making. In: Camarinha-Matos, L.M., Bénaben, F., Picard, W. (eds.) PRO-VE 2015. IAICT, vol. 463, pp. 489–496. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24141-8_45CrossRefGoogle Scholar
  4. 4.
    Debevoise, T., Taylor, J., Sinur, J., Geneva, R.: The MicroGuide to Process and Decision Modeling in BPMN/DMN: Building More Effective Processes by Integrating Process Modeling with Decision Modeling. CreateSpace Independent Publishing Platform (2014)Google Scholar
  5. 5.
    Silver, B.: DMN Method & Style. Cody-Cassidy Press, Altadena (2016)Google Scholar
  6. 6.
    Taylor, J., Fish, A., Vanthienen, J., Vincent, P.: Emerging standards in decision modeling - an introduction to decision model & notation. In: iBPMS: Intelligent BPM Systems: Intelligent BPM Systems: Impact and Opportunity. BPM and Workflow Handbook Series, pp. 133–146. Future Strategies, Inc. (2013)Google Scholar
  7. 7.
    Batoulis, K., Weske, M.: Soundness of decision-aware business processes. In: Carmona, J., Engels, G., Kumar, A. (eds.) BPM 2017. LNBIP, vol. 297, pp. 106–124. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-65015-9_7CrossRefGoogle Scholar
  8. 8.
    Batoulis, K., Haarmann, S., Weske, M.: Various notions of soundness for decision-aware business processes. In: Mayr, H.C., Guizzardi, G., Ma, H., Pastor, O. (eds.) ER 2017. LNCS, vol. 10650, pp. 403–418. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-69904-2_31CrossRefGoogle Scholar
  9. 9.
    Batoulis, K., Baumgraß, A., Herzberg, N., Weske, M.: Enabling dynamic decision making in business processes with DMN. In: Reichert, M., Reijers, H.A. (eds.) BPM 2015. LNBIP, vol. 256, pp. 418–431. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-42887-1_34CrossRefGoogle Scholar
  10. 10.
    Dangarska, Z., Figl, K., Mendling, J.: An explorative analysis of the notational characteristics of the Decision Model and Notation (DMN). In: 2016 IEEE 20th International Enterprise Distributed Object Computing Workshop (EDOCW), pp. 1–9. IEEE (2016)Google Scholar
  11. 11.
    Janssens, L., Bazhenova, E., De Smedt, J., Vanthienen, J., Denecker, M.: Consistent integration of decision (DMN) and process (BPMN) models. In: Proceedings of the CAiSE’16 Forum, at the 28th International Conference on Advanced Information Systems Engineering (CAiSE 2016), Ljubljana, Slovenia, June 13–17, 2016, vol. 1612, pp. 121–128. CEUR-WS. org (2016)Google Scholar
  12. 12.
    Calvanese, D., Dumas, M., Laurson, Ü., Maggi, F.M., Montali, M., Teinemaa, I.: Semantics and analysis of DMN decision tables. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 217–233. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45348-4_13CrossRefGoogle Scholar
  13. 13.
    Calvanese, D., Dumas, M., Maggi, F.M., Montali, M.: Semantic DMN: formalizing decision models with domain knowledge. In: Costantini, S., Franconi, E., Van Woensel, W., Kontchakov, R., Sadri, F., Roman, D. (eds.) RuleML+RR 2017. LNCS, vol. 10364, pp. 70–86. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-61252-2_6CrossRefGoogle Scholar
  14. 14.
    Calvanese, D., Dumas, M., Laurson, Ü., Maggi, F.M., Montali, M., Teinemaa, I.: Semantics, analysis and simplification of DMN decision tables. Information Systems (2018)Google Scholar
  15. 15.
    Hasic, F., Vanwijck, L., Vanthienen, J.: Integrating processes, cases, and decisions for knowledge-intensive process modelling. In: Proceedings of the 1st International Workshop on Practicing Open Enterprise Modeling within OMiLAB (PrOse 2017), Leuven, Belgium, 22 November 2017 (2017)Google Scholar
  16. 16.
    Janssens, L., De Smedt, J., Vanthienen, J.: Modeling and enacting enterprise decisions. In: Krogstie, J., Mouratidis, H., Su, J. (eds.) CAiSE 2016. LNBIP, vol. 249, pp. 169–180. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39564-7_17CrossRefGoogle Scholar
  17. 17.
    Horita, F.E., de Albuquerque, J.P., Marchezini, V., Mendiondo, E.M.: Bridging the gap between decision-making and emerging big data sources: an application of a model-based framework to disaster management in brazil. Decis. Support Syst. 97, 12–22 (2017)CrossRefGoogle Scholar
  18. 18.
    Horita, F.E.A., Link, D., de Albuquerque, J.P., Hellingrath, B.: oDMN: an integrated model to connect decision-making needs to emerging data sources in disaster management. In: 2016 49th Hawaii International Conference on System Sciences (HICSS), pp. 2882–2891. IEEE (2016)Google Scholar
  19. 19.
    Perez-Alvarez, J.M., Gomez-Lopez, M.T., Parody, L., Gasca, R.M.: Process instance query language to include process performance indicators in DMN. In: 2016 IEEE 20th International Enterprise Distributed Object Computing Workshop (EDOCW), pp. 1–8. IEEE (2016)Google Scholar
  20. 20.
    Mertens, S., Gailly, F., Poels, G.: Enhancing declarative process models with DMN decision logic. In: Gaaloul, K., Schmidt, R., Nurcan, S., Guerreiro, S., Ma, Q. (eds.) CAISE 2015. LNBIP, vol. 214, pp. 151–165. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19237-6_10CrossRefGoogle Scholar
  21. 21.
    Hasić, F., De Smedt, J., Vanthienen, J.: A service-oriented architecture design of decision-aware information systems: decision as a service. In: Panetto, H., et al. (eds.) OTM 2017. LNCS, vol. 10573, pp. 353–361. Springer, Cham (2017)Google Scholar
  22. 22.
    Hasić, F., De Smedt, J., Vanthienen, J.: Developing a modelling and mining framework for integrated processes and decisions. In: Debruyne, C., Panetto, H., Weichhart, G., Bollen, P., Ciuciu, I., Vidal, M.-E., Meersman, R. (eds.) OTM 2017. LNCS, vol. 10697, pp. 259–269. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-73805-5_28CrossRefGoogle Scholar
  23. 23.
    Ortner, E., Mevius, M., Wiedmann, P., Kurz, F.: Design of interactional decision support applications for e-participation in smart cities. Int. J. Electron. Gov. Res. (IJEGR) 12(2), 18–38 (2016)CrossRefGoogle Scholar
  24. 24.
    Griesinger, F., Seybold, D., Domaschka, J., Kritikos, K., Woitsch, R.: A DMN-based approach for dynamic deployment modelling of cloud applications. In: Lazovik, A., Schulte, S. (eds.) ESOCC 2016. CCIS, vol. 707, pp. 104–111. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-72125-5_8CrossRefGoogle Scholar
  25. 25.
    Ghlala, R., Kodia Aouina, Z., Ben Said, L.: MC-DMN: Meeting MCDM with DMN involving multi-criteria decision-making in business process. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10409, pp. 3–16. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-62407-5_1CrossRefGoogle Scholar
  26. 26.
    Abdelsalam, H.M., Shoaeb, A.R., Elassal, M.M.: Enhancing Decision Model Notation (DMN) for better use in Business Analytics (BA). In: Proceedings of the 10th International Conference on Informatics and Systems, pp. 321–322. ACM (2016)Google Scholar
  27. 27.
    Batoulis, K., Meyer, A., Bazhenova, E., Decker, G., Weske, M.: Extracting decision logic from process models. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE 2015. LNCS, vol. 9097, pp. 349–366. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19069-3_22CrossRefGoogle Scholar
  28. 28.
    Bazhenova, E., Zerbato, F., Weske, M.: Data-centric extraction of DMN Decision Models from BPMN process models. In: Teniente, E., Weidlich, M. (eds.) BPM 2017. LNBIP, vol. 308, pp. 542–555. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-74030-0_43CrossRefGoogle Scholar
  29. 29.
    Paschke, A., Könnecke, S.: A RuleML - DMN translator. In: RuleML (Supplement) (2016)Google Scholar
  30. 30.
    Bazhenova, E., Weske, M.: Deriving decision models from process models by enhanced decision mining. In: Reichert, M., Reijers, H.A. (eds.) BPM 2015. LNBIP, vol. 256, pp. 444–457. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-42887-1_36CrossRefGoogle Scholar
  31. 31.
    Bazhenova, E., Buelow, S., Weske, M.: Discovering decision models from event logs. In: Abramowicz, W., Alt, R., Franczyk, B. (eds.) BIS 2016. LNBIP, vol. 255, pp. 237–251. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39426-8_19CrossRefGoogle Scholar
  32. 32.
    De Smedt, J., van den Broucke, S.K.L.M., Obregon, J., Kim, A., Jung, J.-Y., Vanthienen, J.: Decision mining in a broader context: an overview of the current landscape and future directions. In: Dumas, M., Fantinato, M. (eds.) BPM 2016. LNBIP, vol. 281, pp. 197–207. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-58457-7_15CrossRefGoogle Scholar
  33. 33.
    Bazhenova, E., Haarmann, S., Ihde, S., Solti, A., Weske, M.: Discovery of fuzzy DMN decision models from event logs. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 629–647. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59536-8_39CrossRefGoogle Scholar
  34. 34.
    Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Decision mining revisited - discovering overlapping rules. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 377–392. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39696-5_23CrossRefGoogle Scholar
  35. 35.
    Kluza, K., Wiśniewski, P., Jobczyk, K., Ligęza, A., Mroczek, A.S.: Comparison of selected modeling notations for process, decision and system modeling. In: 2017 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 1095–1098. IEEE (2017)Google Scholar
  36. 36.
    Ochoa, L., González-Rojas, O.: Analysis and re-configuration of decision logic in adaptive and data-intensive processes (short paper). In: Panetto, H., et al. (eds.) OTM 2017. LNCS, vol. 10573, pp. 306–313. Springer, Cham (2017)Google Scholar
  37. 37.
    Figl, K., Mendling, J., Tokdemir, G., Vanthienen, J.: What we know and what we do not know about DMN. Enterp. Modell. Inf. Syst. Architect. 13, 1–2 (2018)Google Scholar
  38. 38.
    Hasic, F., De Smedt, J., Vanthienen, J.: Towards assessing the theoretical complexity of the Decision Model and Notation (DMN). In: Joint Proceedings of the Radar tracks at the 18th BPMDS, the 22nd EMMSAD, and the 8th EMISA workshop, Essen, Germany, June 12–13, 2017. (2017) 64–71Google Scholar
  39. 39.
    Bock, A.: How modeling language shapes decisions: problem-theoretical arguments and illustration of an example case. In: Schmidt, R., Guédria, W., Bider, I., Guerreiro, S. (eds.) BPMDS/EMMSAD -2016. LNBIP, vol. 248, pp. 383–398. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39429-9_24CrossRefGoogle Scholar
  40. 40.
    Hasić, F., Devadder, L., Dochez, M., Hanot, J., De Smedt, J., Vanthienen, J.: Challenges in refactoring processes to include decision modelling. In: Teniente, E., Weidlich, M. (eds.) BPM 2017. LNBIP, vol. 308, pp. 529–541. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-74030-0_42CrossRefGoogle Scholar
  41. 41.
    Batoulis, K., Nesterenko, A., Repitsch, G., Weske, M.: Decision management in the insurance industry: standards and tools. In: Proceedings of the BPM 2017 Industry Track co-located with the 15th International Conference on Business Process Management (BPM 2017), Barcelona, Spain, 10–15 September 2017, pp. 52–63 (2017)Google Scholar
  42. 42.
    Laurson, Ü., Maggi, F.M.: A tool for the analysis of DMN decision tables. In: BPM (Demos), pp. 56–60 (2016)Google Scholar
  43. 43.
    Batoulis, K., Weske, M.: A tool for checking soundness of decision-aware business processes. In: BPM (Demos). CEUR-WS.org (2017)Google Scholar
  44. 44.
    Cánovas-Segura, B., et al.: A decision support visualization tool for infection management based on BMPN and DMN. In: Valencia-García, R., et al. (eds.) CITI 2017. CCIS, pp. 158–168. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-67283-0_12CrossRefGoogle Scholar
  45. 45.
    Ghlala, R., Aouina, Z.K., Said, L.B.: Decision-making harmonization in business process: using NoSQL databases for decision rules modelling and serialization. In: 2016 4th International Conference on Control Engineering & Information Technology (CEIT), pp. 1–6. IEEE (2016)Google Scholar
  46. 46.
    Proctor, M., Tirelli, E., Sottara, D., Silver, B., Feldman, J., Gauthier, M.: The effectiveness of DMN portability. In: Proceedings of the Doctoral Consortium, Challenge, Industry Track, Tutorials and Posters @ RuleML+RR 2017, London, UK, 11–15 July 2017 (2017)Google Scholar
  47. 47.
    Pufahl, L., Wong, T.Y., Weske, M.: Design of an extensible BPMN process simulator. In: Teniente, E., Weidlich, M. (eds.) BPM 2017. LNBIP, vol. 308, pp. 782–795. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-74030-0_62CrossRefGoogle Scholar
  48. 48.
    Nikaj, A., Batoulis, K., Weske, M.: REST-enabled decision making in business process choreographies. In: Sheng, Q.Z., Stroulia, E., Tata, S., Bhiri, S. (eds.) ICSOC 2016. LNCS, vol. 9936, pp. 547–554. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46295-0_34CrossRefGoogle Scholar
  49. 49.
    Pufahl, L., Mandal, S., Batoulis, K., Weske, M.: Re-evaluation of decisions based on events. In: Reinhartz-Berger, I., Gulden, J., Nurcan, S., Guédria, W., Bera, P. (eds.) BPMDS/EMMSAD -2017. LNBIP, vol. 287, pp. 68–84. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59466-8_5CrossRefGoogle Scholar
  50. 50.
    Dasseville, I., Janssens, L., Janssens, G., Vanthienen, J., Denecker, M.: Combining DMN and the knowledge base paradigm for flexible decision enactment. In: RuleML 2016 Supplementary Proceedings. New York, USA, 6–9 July 2016 (2016)Google Scholar
  51. 51.
    Bazhenova, E., Weske, M.: Optimal acquisition of input data for decision taking in business processes. In: Proceedings of the Symposium on Applied Computing, pp. 703–710. ACM (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Krzysztof Kluza
    • 1
    Email author
  • Weronika T. Adrian
    • 1
  • Piotr Wiśniewski
    • 1
  • Antoni Ligęza
    • 1
  1. 1.AGH University of Science and TechnologyKrakowPoland

Personalised recommendations