Evidential Artificial Immune Recognition System

  • Abir LahsoumiEmail author
  • Zied Elouedi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11775)


Uncertainty is one of the main classification issues that must be handled carefully and not rejected in order to make better decisions. Artificial immune recognition system (AIRS) is an immune-inspired supervised learning classifier that has shown good and competitive classification results. It works perfectly in a certain context, however it is quite the opposite in an environment pervaded with uncertainty. To overcome this limitation, we propose a new approach combining the AIRS and belief function theory one of the well-know theories managing uncertainty. Experimentations on real data sets from the U.C.I machine learning repository show good performances of the proposed approach.


Artificial immune recognition system (AIRS) Classification Uncertainty Belief function theory 


  1. 1.
    Watkins, A., Timmis, J., Boggess, L.: Artificial immune recognition system (AIRS): an immune-inspired supervised learning algorithm. Genet. Program. Evolvable Mach. 5(3), 291–317 (2004)CrossRefGoogle Scholar
  2. 2.
    Meng, L., van der Putten, P., Wang, H.: A comprehensive benchmark of the artificial immune recognition system (AIRS). In: Li, X., Wang, S., Dong, Z.Y. (eds.) ADMA 2005. LNCS (LNAI), vol. 3584, pp. 575–582. Springer, Heidelberg (2005). Scholar
  3. 3.
    Hentech, R., Jenhani, I., Elouedi, Z.: Possibilistic AIRS induction from uncertain data. Soft Comput. 20(1), 3–17 (2016)CrossRefGoogle Scholar
  4. 4.
    Dasarathy, B.V.: Nearest Neighbour NN Norms: NN Pattern Classification Techniques. IEEE Computer Society Press, Washington (1991)Google Scholar
  5. 5.
    Jenhani, I., Elouedi, Z.: Re-visiting the artificial immune recognition system: a survey and an improved version. Artif. Intell. Rev. 42(4), 821–833 (2012)CrossRefGoogle Scholar
  6. 6.
    Faziludeen, S., Sankaran, P.: ECG beat classification using evidential K-nearest neighbours. Proc. Comput. Sci. 89, 499–505 (2016)CrossRefGoogle Scholar
  7. 7.
    Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38, 325–339 (1967)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Denoeux, T.: A k-nearest neighbor classification rule based on Dempster-Shafer theory. IEEE Trans. Syst. Man Cybern. 25, 804–813 (1995)CrossRefGoogle Scholar
  9. 9.
    Zouhal, L.M., Denoeux, T.: An evidence theoretic kNN rule with parameter optimization. IEEE Trans. Syst. Man Cybern. 28(2), 263–271 (1998)CrossRefGoogle Scholar
  10. 10.
    Watkins, A.: A resource limited artificial immune classifier. In: The 2002 Congress on Evolutionary Computation, pp. 926–931 (2002)Google Scholar
  11. 11.
    Polat, K., Gunes, S.: Automated identification of diseases related to lymph system from lymphography data using artificial immune recognition system with fuzzy resource allocation mechanism (fuzzy-airs). Biomed. Signal Process. Control 1(4), 253–260 (2006)CrossRefGoogle Scholar
  12. 12.
    Golzari, S., Doraisamy, S., Sulaiman, M.D.N., Udzir, N.I.: Effect of fuzzy resource allocation method on AIRS classifier accuracy. Theor. Appl. Inform. Technol. 5(4), 18–24 (2005)Google Scholar
  13. 13.
    Polat, K., Güneş, S.: Principles component analysis, fuzzy weighting pre-processing and artificial immune recognition system based diagnostic system for diagnosis of lung cancer. Expert Syst. Appl. 34(1), 214–221 (2008)CrossRefGoogle Scholar
  14. 14.
    Chikh, M., Saidi, M., Settouti, N.: Diagnosis of diabetes diseases using an artificial immune recognition system2 (AIRS2) with fuzzy k-nearest neighbor. J. Med. Syst. 36(5), 2721–2729 (2012)CrossRefGoogle Scholar
  15. 15.
    Elouedi, Z., Mellouli, K., Smets, P.: Belief decision trees: theoretical foundations. Int. J. Approx. Reason. 28(2–3), 91–124 (2001)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Lee, H., Grosse, R., Ranganath, R., Ng, A.Y.: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: The 26th Annual International Conference on Machine Learning, pp. 609–616 (2009)Google Scholar
  17. 17.
    Catal, C., Diri, B.: Software defect prediction using artificial immune recognition system. In: The 25th Conference on IASTED International MultiConference: Software Engineering, pp. 285–290 (2007)Google Scholar
  18. 18.
    Sabri, F., Norwawi, N.M., Seman, K.: Hybrid of rough set theory and artificial immune recognition system as a solution to decrease false alarm rate in intrusion detection system. In: 7th International Conference on Information Assurance and Security (IAS), pp. 134–138 (2011)Google Scholar
  19. 19.
    Polat, K., Sahan, S., Kodaz, H., Günes, S.: A new classification method for breast cancer diagnosis: feature selection artificial immune recognition system (FS-AIRS). In: Wang, L., Chen, K., Ong, Y.S. (eds.) ICNC 2005. LNCS, vol. 3611, pp. 830–838. Springer, Heidelberg (2005). Scholar
  20. 20.
    Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, New Jersey (1976)zbMATHGoogle Scholar
  21. 21.
    Reineking, T.: Belief functions: theory and algorithms. Doctoral dissertation, Staats-und Universitätsbibliothek Bremen (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.LARODEC, Institut Supérieur de Gestion de TunisUniversité de TunisLe BardoTunisia

Personalised recommendations