Advertisement

A Multilingual Semantic Similarity-Based Approach for Question-Answering Systems

  • Wafa WaliEmail author
  • Fatma Ghorbel
  • Bilel Gragouri
  • Fayçal Hamdi
  • Elisabeth Metais
Conference paper
  • 818 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11775)

Abstract

Question-answering systems face a challenge related to the process of deciding automatically about the veracity of a given answer. This issue is particularly problematic when handling open-ended questions. In this paper, we propose a multilingual semantic similarity-based approach to estimate the similarity score between the user’s answer and the right one saved in the data tier. This approach is mainly based on semantic information notably the synonymy relationships between words and syntactico-semantic information especially semantic class and thematic role. It supports three languages: English, French and Arabic. Our approach is applied to a multilingual ontology-based question-answering training for Alzheimer’s disease patients. The performance of the pro- posed approach was confirmed through experiments on 20 patients that promising capabilities in identifying literal and some types of intelligent similarity.

Keywords

Question-answering systems Multilingualism Semantic similarity Synonymy relationship Semantic class Thematic role 

References

  1. 1.
    Agirre, E., Cer, D., Diab, M., Gonzalez-Agirre, A., Guo, W.: SEM 2013 shared task: semantic textual similarity, including a pilot on typed-similarity. In: In* SEM 2013: The Second Joint Conference on Lexical and Computational Semantics. Association for Computational Linguistics. Citeseer (2013)Google Scholar
  2. 2.
    Anjaneyulu, M., Sarma, S.S.V.N., Vijaya Pal Reddy, P., Prem Chander, K., Nagaprasad, S.: Sentence similarity using syntactic and semantic features for multi-document summarization. In: Bhattacharyya, S., Hassanien, A.E., Gupta, D., Khanna, A., Pan, I. (eds.) International Conference on Innovative Computing and Communications. LNNS, vol. 56, pp. 471–485. Springer, Singapore (2019).  https://doi.org/10.1007/978-981-13-2354-6_49 CrossRefGoogle Scholar
  3. 3.
    Course, L.: Lexical semantics of verbs vi: assessing semantic determinants of argument realization, July 2009Google Scholar
  4. 4.
    Ferreira, R., Lins, R.D., Simske, S.J., Freitas, F., Riss, M.: Assessing sentence similarity through lexical, syntactic and semantic analysis. Comput. Speech Lang. 39, 1–28 (2016)CrossRefGoogle Scholar
  5. 5.
    Gad, W.K., Kamel, M.S.: New semantic similarity based model for text clustering using extended gloss overlaps. In: Perner, P. (ed.) MLDM 2009. LNCS (LNAI), vol. 5632, pp. 663–677. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03070-3_50CrossRefGoogle Scholar
  6. 6.
    Herradi, N., Hamdi, F., Métais, E., Ghorbel, F., Soukane, A.: PersonLink: an ontology representing family relationships for the CAPTAIN MEMO memory prosthesis. In: Jeusfeld, M.A., Karlapalem, K. (eds.) ER 2015. LNCS, vol. 9382, pp. 3–13. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-25747-1_1 CrossRefGoogle Scholar
  7. 7.
    Islam, A., Inkpen, D.: Semantic text similarity using corpus-based word similarity and string similarity. ACM Trans. Knowl. Discov. Data (TKDD) 2(2), 10 (2008)Google Scholar
  8. 8.
    Jaccard, P.: Etude comparative de la distribution florale dans une portion des Alpes et du Jura. Impr. Corbaz (1901)Google Scholar
  9. 9.
    Khemakhem, A., Gargouri, B., Hamadou, A.B., Francopoulo, G.: ISO standard modeling of a large arabic dictionary. Nat. Lang. Eng. 22, 1–31 (2015)Google Scholar
  10. 10.
    Lehmann, J., et al.: DBpedia - a large-scale, multilingual knowledge base extracted from Wikipedia. Semant. Web J. 6(2), 167–195 (2015). http://jens-lehmann.org/files/2015/swjdbpedia.pdfCrossRefGoogle Scholar
  11. 11.
    Li, Y., Mclean, D., Bandar, Z., O’Shea, J., Crockett, K.: Sentence similarity based on semantic nets and corpus statistics. IEEE Trans. Knowl. Data Eng. 18(8), 1138–1150 (2006).  https://doi.org/10.1109/TKDE.2006.130CrossRefGoogle Scholar
  12. 12.
    Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky, D.: The stanford CoreNLP natural language processing toolkit. In: Association for Computational Linguistics (ACL) System Demonstrations, pp. 55–60 (2014). http://www.aclweb.org/anthology/P/P14/P14-5010
  13. 13.
    Metais, E., et al.: Memory prosthesis. Non-Pharmacol. Ther. Dement. 3(2), 177–180 (2015). ISSN 1949–484XGoogle Scholar
  14. 14.
    Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995).  https://doi.org/10.1145/219717.219748CrossRefGoogle Scholar
  15. 15.
    Oliva, J., Serrano, J.I., del Castillo, M.D., Iglesias, Á.: SyMSS: a syntax-based measure for short-text semantic similarity. Data Knowl. Eng. 70(4), 390–405 (2011)CrossRefGoogle Scholar
  16. 16.
    Schuler, K.K.: VerbNet: a broad-coverage, comprehensive verb lexicon. Ph.D. thesis, University of Pennsylvania (2006). http://verbs.colorado.edu/~kipper/Papers/dissertation.pdf
  17. 17.
    Silberztein, M., Váradi, T., Tadić, M.: Open source multi-platform NooJ for NLP. In: Proceedings of COLING 2012: Demonstration Papers, pp. 401–408. The COLING 2012 Organizing Committee, Mumbai, December 2012. https://www.aclweb.org/anthology/C12-3050
  18. 18.
    Sultan, M.A., Bethard, S., Sumner, T.: Dls@ cu: sentence similarity from word alignment. In: Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pp. 241–246 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Wafa Wali
    • 1
    Email author
  • Fatma Ghorbel
    • 1
    • 2
  • Bilel Gragouri
    • 1
  • Fayçal Hamdi
    • 2
  • Elisabeth Metais
    • 2
  1. 1.MIRACL LaboratorySfaxTunisia
  2. 2.Cnam laboratory CédricParisFrance

Personalised recommendations