Lectures on Energy Solutions for the Stationary KPZ Equation

  • Massimiliano GubinelliEmail author
Part of the Lecture Notes in Mathematics book series (LNM, volume 2253)


These are a set of lectures delivered at the CIME-EMS Summer School in Applied Mathematics “Singular Random Dynamics” which have been held from 22 to 26 August 2016 in Cetraro, Italy. The goal of these lectures is to introduce the concept of energy solution for the Kadar–Parisi–Zhang equation and to discuss the application of this notion of solution to the analysis of the scaling limit of certain weakly-asymmetric growth processes.


  1. 1.
    S. Assing, A pregenerator for Burgers equation forced by conservative noise. Commun. Math. Phys. 225(3), 611–632 (2002)MathSciNetCrossRefGoogle Scholar
  2. 2.
    L. Bertini, G. Giacomin, Stochastic Burgers and KPZ equations from particle systems. Commun. Math. Phys. 183(3), 571–607 (1997)MathSciNetCrossRefGoogle Scholar
  3. 3.
    J. Diehl, M. Gubinelli, N. Perkowski, The Kardar–Parisi–Zhang equation as scaling limit of weakly asymmetric interacting Brownian motions. Commun. Math. Phys. 354(2), 549–589 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    P. Echeverría, A criterion for invariant measures of Markov processes. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 61(1), 1–16 (1982)MathSciNetCrossRefGoogle Scholar
  5. 5.
    T. Franco, P. Gonçalves, G.M. Schütz, Scaling limits for the exclusion process with a slow site. Stoch. Process. Appl. 126(3), 800–831 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    T. Funaki, J. Quastel, KPZ equation, its renormalization and invariant measures. Stoch. Part. Differ. Equ. Anal. Comput. 3(2), 159–220 (2015)MathSciNetzbMATHGoogle Scholar
  7. 7.
    P. Gonçalves, Derivation of the stochastic Burgers equation from the WASEP, in From Particle Systems to Partial Differential Equations. II. Springer Proceedings in Mathematics and Statistics, vol. 129 (Springer, Cham, 2015), pp. 209–229CrossRefGoogle Scholar
  8. 8.
    P. Goncalves, M. Jara, Universality of KPZ equation (2010). arXiv:1003.4478Google Scholar
  9. 9.
    P. Gonçalves, M. Jara, Nonlinear fluctuations of weakly asymmetric interacting particle systems. Arch. Ration. Mech. Anal. 212(2), 597–644 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    P. Gonçalves, M. Jara, S. Sethuraman, A stochastic Burgers equation from a class of microscopic interactions. Ann. Probab. 43(1), 286–338 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    M. Gubinelli, M. Jara, Regularization by noise and stochastic burgers equations. Stoch. Part. Differ. Equ. Anal. Comput. 1(2), 325–350 (2013)MathSciNetzbMATHGoogle Scholar
  12. 12.
    M. Gubinelli, N. Perkowski, Lectures on Singular Stochastic PDEs. Ensaios Matemáticos [Mathematical Surveys], vol. 29 (Sociedade Brasileira de Matemática, Rio de Janeiro, 2015)Google Scholar
  13. 13.
    M. Gubinelli, N. Perkowski, The Hairer-Quastel universality result at stationarity, in Stochastic Analysis on Large Scale Interacting Systems. RIMS Kôkyûroku Bessatsu, vol. B59 (Research Institute for Mathematical Sciences, Kyoto, 2016), pp. 101–115Google Scholar
  14. 14.
    M. Gubinelli, N. Perkowski, Energy solutions of KPZ are unique. J. Am. Math. Soc. 31(2), 427–471 (2018)MathSciNetCrossRefGoogle Scholar
  15. 15.
    M. Gubinelli, N. Perkowski, The infinitesimal generator of the stochastic Burgers equation (2018). arXiv:1810.12014 [math]Google Scholar
  16. 16.
    M. Hairer, J. Quastel, A class of growth models rescaling to KPZ. Forum Math. Pi 6, e3, 112 (2018)Google Scholar
  17. 17.
    S. Janson, Gaussian Hilbert Spaces. Cambridge Tracts in Mathematics, vol. 129 (Cambridge University Press, Cambridge, 1997)Google Scholar
  18. 18.
    I. Karatzas, S.E. Shreve, Brownian Motion and Stochastic Calculus (Springer, New York, 1998)CrossRefGoogle Scholar
  19. 19.
    M. Kardar, G. Parisi, Y.-C. Zhang, Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56(9), 889–892 (1986)CrossRefGoogle Scholar
  20. 20.
    T. Komorowski, C. Landim, S. Olla, Fluctuations in Markov Processes: Time Symmetry and Martingale Approximation, 2012 edn. (Springer, Heidelberg, 2012)CrossRefGoogle Scholar
  21. 21.
    J. Quastel, Introduction to KPZ. Lecture Notes in Mathematics (Arizona School of Analysis and Mathematical Physics, Tucson, 2012)Google Scholar
  22. 22.
    F. Russo, P. Vallois, Elements of stochastic calculus via regularization, in Séminaire de Probabilités XL, ed. by C. Donati-Martin, M. Émery, A. Rouault, C. Stricker. Lecture Notes in Mathematics, vol. 1899 (Springer, Berlin, 2007), pp. 147–185Google Scholar
  23. 23.
    F. Russo, P. Vallois, J. Wolf, A generalized class of Lyons-Zheng processes. Bernoulli 7(2), 363–379 (2001)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Hausdorff Center for MathematicsUniversity of BonnBonnGermany

Personalised recommendations