Advertisement

Characterizing the Genome of Nicotiana tabacum

  • James N. D. BatteyEmail author
  • Nicolas Sierro
  • Nikolai V. Ivanov
Chapter
  • 32 Downloads
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

The tobacco plant is an important crop and model organism, and there is a widespread interest in improving its agronomical properties. Unraveling its genome is necessary for understanding and predicting its biological properties and to ultimately contribute to breeding or engineering efforts for creating new varieties. Here, we discuss the key motivations behind the sequencing of its genome and the current state of genome sequencing efforts, as well as how it has been put to use. We finally speculate on what genomic trends relating to tobacco may be of interest in the near future.

References

  1. Bevan MW, Uauy C, Wulff BB, Zhou J, Krasileva K, Clark MD (2017) Genomic innovation for crop improvement. Nature 543:346–354CrossRefGoogle Scholar
  2. Bindler G, Plieske J, Bakaher N, Gunduz I, Ivanov N, van der Hoeven R, Ganal M, Donini P (2011) A high density genetic map of tobacco (Nicotiana tabacum L.) obtained from large scale microsatellite marker development. Theor Appl Genet 123:219–230CrossRefGoogle Scholar
  3. Bindler G, van der Hoeven R, Gunduz I, Plieske J, Ganal M, Rossi L, Gadani F, Donini P (2007) A microsatellite marker based linkage map of tobacco. Theor Appl Genet 114:341–349CrossRefGoogle Scholar
  4. Bland M, Matzinger D, Levings C (1985) Comparison of the mitochondrial genome of Nicotiana tabacum with its progenitor species. Theor Appl Genet 69:535–541CrossRefGoogle Scholar
  5. Bombarely A, Edwards KD, Sanchez-Tamburrino J, Mueller LA (2012) Deciphering the complex leaf transcriptome of the allotetraploid species Nicotiana tabacum: a phylogenomic perspective. BMC Genom 13:406CrossRefGoogle Scholar
  6. Chase MW, Knapp S, Cox AV, Clarkson JJ, Butsko Y, Joseph J, Savolainen V, Parokonny AS (2003) Molecular systematics, GISH and the origin of hybrid taxa in Nicotiana (Solanaceae). Ann Bot 92:107–127CrossRefGoogle Scholar
  7. Clarkson JJ, Knapp S, Garcia VF, Olmstead RG, Leitch AR, Chase MW (2004) Phylogenetic relationships in Nicotiana (Solanaceae) inferred from multiple plastid DNA regions. Mol Phylogenet Evol 33:75–90CrossRefGoogle Scholar
  8. Ding A, Marowa P, Kong Y (2016) Genome-wide identification of the expansin gene family in tobacco (Nicotiana tabacum). Mol Genet Genomics 291:1891–1907CrossRefGoogle Scholar
  9. Edwards KD, Fernandez-Pozo N, Drake-Stowe K, Humphry M, Evans AD, Bombarely A, Allen F, Hurst R, White B, Kernodle SP, Bromley JR, Sanchez-Tamburrino JP, Lewis RS, Mueller LA (2017) A reference genome for Nicotiana tabacum enables map-based cloning of homeologous loci implicated in nitrogen utilization efficiency. BMC Genom 18:448CrossRefGoogle Scholar
  10. Foerster H, Bombarely A, Battey JND, Sierro N, Ivanov NV, Mueller LA (2018) SolCyc: a database hub at the Sol Genomics Network (SGN) for the manual curation of metabolic networks in Solanum and Nicotiana specific databases. Database (Oxford)Google Scholar
  11. Gao J, Wang G, Ma S, Xie X, Wu X, Zhang X, Wu Y, Zhao P, Xia Q (2015) CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol Biol 87:99–110CrossRefGoogle Scholar
  12. Gao J, Zhang T, Xu B, Jia L, Xiao B, Liu H, Liu L, Yan H, Xia Q (2018) CRISPR/Cas9-mediated mutagenesis of carotenoid cleavage dioxygenase 8 (CCD8) in tobacco affects shoot and root architecture. Int J Mol Sci 19Google Scholar
  13. Gebhardt C (2016) The historical role of species from the Solanaceae plant family in genetic research. Theor Appl Genet 129:2281–2294CrossRefGoogle Scholar
  14. Hiatt A, Cafferkey R, Bowdish K (1989) Production of antibodies in transgenic plants. Nature 342:76–78CrossRefGoogle Scholar
  15. Jiao WB, Schneeberger K (2017) The impact of third generation genomic technologies on plant genome assembly. Curr Opin Plant Biol 36:64–70CrossRefGoogle Scholar
  16. Kenton A, Parokonny AS, Gleba YY, Bennett MD (1993) Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics. Mol Gen Genet 240:159–169CrossRefGoogle Scholar
  17. Kim JS, Lee J, Lee CH, Woo SY, Kang H, Seo SG, Kim SH (2015) Activation of pathogenesis-related genes by the Rhizobacterium, Bacillus sp. JS, which induces systemic resistance in tobacco plants. Plant Pathol J 31:195–201CrossRefGoogle Scholar
  18. Knief C (2014) Analysis of plant microbe interactions in the era of next generation sequencing technologies. Front Plant Sci 5:216–216CrossRefGoogle Scholar
  19. Kovarik A, Renny-Byfield S, Grandbastien M-A, Leitch A (2012) Evolutionary implications of genome and karyotype restructuring in Nicotiana tabacum L. In: Soltis PS, Soltis DE (eds) Polyploidy and genome evolution. Springer, Berlin, HeidelbergGoogle Scholar
  20. Lefeuvre P, Martin DP, Elena SF, Shepherd DN, Roumagnac P, Varsani A (2019) Evolution and ecology of plant viruses. Nat Rev Microbiol 1Google Scholar
  21. Leitch IJ, Hanson L, Lim KY, Kovarik A, Chase MW, Clarkson JJ, Leitch AR (2008) The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae). Ann Bot 101:805–814CrossRefGoogle Scholar
  22. Long N, Ren X, Xiang Z, Wan W, Dong Y (2016) Sequencing and characterization of leaf transcriptomes of six diploid Nicotiana species. J Biol Res Thessalon 23:6CrossRefGoogle Scholar
  23. Murad L, Lim KY, Christopodulou V, Matyasek R, Lichtenstein CP, Kovarik A, Leitch AR (2002) The origin of tobacco’s T genome is traced to a particular lineage within Nicotiana tomentosiformis (Solanaceae). Am J Bot 89:921–928CrossRefGoogle Scholar
  24. Nagata T, Hasewa S, Inzé D (eds) (2004) Tobacco BY-2 cells. SpringerGoogle Scholar
  25. Narayan R (1987) Nuclear DNA changes, genome differentiation and evolution in Nicotiana (Solanaceae). Plant Syst Evol 157:161–180CrossRefGoogle Scholar
  26. News, NCSU (2008) NC State University maps tobacco genome [Online]. https://news.ncsu.edu/2008/06/nc-state-university-maps-tobacco-genome/. Accessed 19 Feb, 2019
  27. Opperman CH, Lommel SA, Sosinski BR, Lakey N, Gadani F (2003) The tobacco genome initiative. In: CORESTA meeting, agronomy/phytopathology. BucharestGoogle Scholar
  28. Petit M, Lim KY, Julio E, Poncet C, De Borne FD, Kovarik A, Leitch AR, Grandbastien MA, Mhiri C (2007 July 1) Differential impact of retrotransposon populations on the genome of allotetraploid tobacco (Nicotiana tabacum). Mol Genet Genomics 278(1):1–5Google Scholar
  29. Rabara RC, Tripathi P, Reese RN, Rushton DL, Alexander D, Timko MP, Shen QJ, Rushton PJ (2015) Tobacco drought stress responses reveal new targets for Solanaceae crop improvement. BMC Genom 16:484CrossRefGoogle Scholar
  30. Renny-Byfield S, Chester M, Kovarik A, le Comber SC, Grandbastien MA, Deloger M, Nichols RA, Macas J, Novak P, Chase MW, Leitch AR (2011) Next generation sequencing reveals genome downsizing in allotetraploid Nicotiana tabacum, predominantly through the elimination of paternally derived repetitive DNAs. Mol Biol Evol 28:2843–2854CrossRefGoogle Scholar
  31. Schachtsiek J, Stehle F (2019) Nicotine‐free, non‐transgenic tobacco (Nicotiana tabacum L.) Edited by CRISPR‐Cas9. Plant Biotechnol JGoogle Scholar
  32. Sierro N, Battey JN, Ouadi S, Bakaher N, Bovet L, Willig A, Goepfert S, Peitsch MC, Ivanov NV (2014) The tobacco genome sequence and its comparison with those of tomato and potato. Nat Commun 5:3833CrossRefGoogle Scholar
  33. Sierro N, Battey JN, Ouadi S, Bovet L, Goepfert S, Bakaher N, Peitsch MC, Ivanov NV (2013a) Reference genomes and transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis. Genome Biol 14:R60CrossRefGoogle Scholar
  34. Sierro N, van Oeveren J, van Eijk MJ, Martin F, Stormo KE, Peitsch MC, Ivanov NV (2013b) Whole genome profiling physical map and ancestral annotation of tobacco Hicks Broadleaf. Plant J 75:880–889CrossRefGoogle Scholar
  35. Skalicka K, Lim K, Matyasek R, Matzke M, Leitch A, Kovarik A (2005) Preferential elimination of repeated DNA sequences from the paternal, Nicotiana tomentosiformis genome donor of a synthetic, allotetraploid tobacco. New Phytol 166:291–303CrossRefGoogle Scholar
  36. Song Z, Pan F, Lou X, Wang D, Yang C, Zhang B, Zhang H (2019) Genome-wide identification and characterization of Hsp70 gene family in Nicotiana tabacum. Mol Biol RepGoogle Scholar
  37. Tong Z, Xiao B, Jiao F, Fang D, Zeng J, Wu X, Chen X, Yang J, Li Y (2016) Large-scale development of SSR markers in tobacco and construction of a linkage map in flue-cured tobacco. Breed Sci 66:381–390CrossRefGoogle Scholar
  38. Tong Z, Yang Z, Chen X, Jiao F, Li X, Wu X, Gao Y, Xiao B, Wu W (2012) Large-scale development of microsatellite markers in Nicotiana tabacum and construction of a genetic map of flue-cured tobacco. Plant Breed 131:674–680CrossRefGoogle Scholar
  39. Tyson JR, O’Neil NJ, Jain M, Olsen HE, Hieter P, Snutch TP (2018) MinION-based long-read sequencing and assembly extends the Caenorhabditis elegans reference genome. Genome Res 28:266–274CrossRefGoogle Scholar
  40. Wei C, Chen J, Kuang H (2016) Dramatic number variation of R genes in Solanaceae species accounted for by a few R gene subfamilies. PLoS ONE 11:e0148708CrossRefGoogle Scholar
  41. Yuan XL, Cao M, Liu XM, Du YM, Shen GM, Zhang ZF, Li JH, Zhang P (2018) Composition and genetic diversity of the Nicotiana tabacum microbiome in different topographic areas and growth periods. Int J Mol Sci 19Google Scholar
  42. Yukawa M, Tsudzuki T, Sugiura M (2006) The chloroplast genome of Nicotiana sylvestris and Nicotiana tomentosiformis: complete sequencing confirms that the Nicotiana sylvestris progenitor is the maternal genome donor of Nicotiana tabacum. Mol Genet Genomics 275:367–373CrossRefGoogle Scholar
  43. Zhou XM, Zhao P, Wang W, Zou J, Cheng TH, Peng XB, Sun MX (2015) A comprehensive, genome-wide analysis of autophagy-related genes identified in tobacco suggests a central role of autophagy in plant response to various environmental cues. DNA Res 22:245–257CrossRefGoogle Scholar
  44. Zimmerman JL, Goldberg RB (1977) DNA sequence organization in the genome of Nicotiana tabacum. Chromosoma 59:227–252CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • James N. D. Battey
    • 1
    Email author
  • Nicolas Sierro
    • 1
  • Nikolai V. Ivanov
    • 1
  1. 1.PMI R&DPhilip Morris Products S.A.NeuchâtelSwitzerland

Personalised recommendations