Advertisement

Background and History of Tobacco Genome Resources

  • Nicolas SierroEmail author
  • Nikolai V. Ivanov
Chapter
  • 32 Downloads
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

Nicotiana species, which share significant similarities with tomato, potato, eggplant, and pepper, originated in South America and subsequently spread to North America, Africa, and Australia. They are known to produce and accumulate alkaloids as part of their defense mechanism against insects and herbivores. Since their description and classification by Goodspeed in 1947, research on Nicotiana species has been ongoing, including investigations on how the genus evolved and its relationship with other Solanaceae members. The presence of diploid and polyploid species in Nicotiana and their large genome sizes resulted in the generation of multiple resources aiming at better understanding of how polyploids formed and evolved over time. The use of Nicotiana tabacum and Nicotiana benthamiana as model organisms in plant research further helped increase the interest in understanding the molecular mechanisms in these species. Here, we review the literature and summarize what is currently known about the phylogeny, cytology, and genetics of Nicotiana species. We also present the current state of the Nicotiana genomes and introduce the functional genomics insights they have provided.

References

  1. Battey JND, Ivanov NV (2014) Data mining of plant metabolic pathways. In: Hoffmann RD, Gohier A, Pospisil P (eds) Data mining in drug discovery. Wiley, pp 101–130Google Scholar
  2. Bindler G, Plieske J, Bakaher N, Gunduz I, Ivanov N, Van der Hoeven R, Ganal M, Donini P (2011) A high density genetic map of tobacco (Nicotiana tabacum L.) obtained from large scale microsatellite marker development. Theor Appl Genet 123:219–230CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bland MM, Matzinger DF, Levings CS (1985) Comparison of the mitochondrial genome of Nicotiana tabacum with its progenitor species. Theor Appl Genet 69:535–541CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bolger A, Scossa F, Bolger ME, Lanz C, Maumus F, Tohge T, Quesneville H, Alseekh S, Sorensen I, Lichtenstein G et al (2014) The genome of the stress-tolerant wild tomato species Solanum pennellii. Nat Genet 46:1034–1038CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bombarely A, Rosli HG, Vrebalov J, Moffett P, Mueller L, Martin G (2012) A draft genome sequence of Nicotiana benthamiana to enhance molecular plant-microbe biology research. Mol. Plant Microbe Interact 25:1523–1530Google Scholar
  6. Bombarely A, Moser M, Amrad A, Bao M, Bapaume L, Barry CS, Bliek M, Boersma MR, Borghi L, Bruggmann R et al (2016) Insight into the evolution of the Solanaceae from the parental genomes of Petunia hybrida. Nat Plants 2:16074CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chakrabarti M, Meekins KM, Gavilano LB, Siminszky B (2007) Inactivation of the cytochrome P450 gene CYP82E2 by degenerative mutations was a key event in the evolution of the alkaloid profile of modern tobacco. New Phytol 175:565–574CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chase MW, Knapp S, Cox AV, Clarkson JJ, Butsko Y, Joseph J, Savolainen V, Parokonny AS (2003) Molecular systematics, GISH and the origin of hybrid taxa in Nicotiana (Solanaceae). Ann Bot 92:107–127CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chen K, Dorlhac de Borne F, Szegedi E, Otten L (2014) Deep sequencing of the ancestral tobacco species Nicotiana tomentosiformis reveals multiple T-DNA inserts and a complex evolutionary history of natural transformation in the genus Nicotiana. Plant J 80:669–682CrossRefGoogle Scholar
  10. Chen K, Dorlhac de Borne F, Sierro N, Ivanov NV, Alouia M, Koechler S, Otten L (2018) Organization of the TC and TE cellular T-DNA regions in Nicotiana otophora and functional analysis of three diverged TE-6b genes. Plant J Cell Mol Biol 94:274–287CrossRefGoogle Scholar
  11. Clarkson JJ, Knapp S, Garcia VF, Olmstead RG, Leitch AR, Chase MW (2004) Phylogenetic relationships in Nicotiana (Solanaceae) inferred from multiple plastid DNA regions. Mol Phylogenet Evol 33:75–90CrossRefGoogle Scholar
  12. Clarkson JJ, Lim KY, Kovarik A, Chase MW, Knapp S, Leitch AR (2005) Long-term genome diploidization in allopolyploid Nicotiana section Repandae (Solanaceae). New Phytol 168:241–252CrossRefGoogle Scholar
  13. Dadejova M, Lim KY, Souckova-Skalicka K, Matyasek R, Grandbastien MA, Leitch A, Kovarik A (2007) Transcription activity of rRNA genes correlates with a tendency towards intergenomic homogenization in Nicotiana allotetraploids. New Phytol 174:658–668CrossRefPubMedPubMedCentralGoogle Scholar
  14. Darvishzadeh R, Mirzaei L, Maleki HH, Laurentin H, Alavi SR (2013) Genetic variation in oriental tobacco (Nicotiana tabacum L.) by agro-morphological traits and simple sequence repeat markers. Rev Ciênc Agronômica 44:347–355CrossRefGoogle Scholar
  15. Davalieva K, Maleva I, Filiposki K, Spiroski O, Efremov GD (2010) Genetic Variability of Macedonian tobacco varieties determined by microsatellite marker analysis. Diversity 2:439–449CrossRefGoogle Scholar
  16. Davis DL, Nielsen MT (1999) Tobacco : production, chemistry and technology. Blackwell Science LtdGoogle Scholar
  17. De Sutter V, Vanderhaeghen R, Tilleman S, Lammertyn F, Vanhoutte I, Karimi M, Inze D, Goossens A, Hilson P (2005) Exploration of jasmonate signalling via automated and standardized transient expression assays in tobacco cells. Plant J 44:1065–1076CrossRefPubMedPubMedCentralGoogle Scholar
  18. Denoeud F, Carretero-Paulet L, Dereeper A, Droc G, Guyot R, Pietrella M, Zheng C, Alberti A, Anthony F, Aprea G et al (2014) The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science 345:1181–1184CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dewey RE, Xie J (2013) Molecular genetics of alkaloid biosynthesis in Nicotiana tabacum. Phytochemistry 94:10–27CrossRefGoogle Scholar
  20. Edwards KD, Fernandez-Pozo N, Drake-Stowe K, Humphry M, Evans AD, Bombarely A, Allen F, Hurst R, White B, Kernodle SP et al (2017) A reference genome for Nicotiana tabacum enables map-based cloning of homeologous loci implicated in nitrogen utilization efficiency. BMC Genom 18:448CrossRefGoogle Scholar
  21. Eich E (2008) Solanaceae and convolvulaceae: secondary metabolites: biosynthesis, chemotaxonomy, biological and economic significance (a handbook). SpringerGoogle Scholar
  22. Elliott PE, Lewis RS, Shew HD, Gutierrez WA, Nicholson JS (2008) Evaluation of tobacco germplasm for seedling resistance to stem rot and target spot caused by Thanatephorus cucumeris. Plant Dis 92:425–430CrossRefPubMedPubMedCentralGoogle Scholar
  23. Fernandez-Pozo N, Menda N, Edwards JD, Saha S, Tecle IY, Strickler SR, Bombarely A, Fisher-York T, Pujar A, Foerster H et al (2015) The Sol Genomics Network (SGN)-from genotype to phenotype to breeding. Nucleic Acids Res 43:D1036–D1041CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fricano A, Bakaher N, Del Corvo M, Piffanelli P, Donini P, Stella A, Ivanov NV, Pozzi C (2012) Molecular diversity, population structure, and linkage disequilibrium in a worldwide collection of tobacco (Nicotiana tabacum L.) germplasm. BMC Genet 13:18Google Scholar
  25. Gill BS (1991) Nucleocytoplasmic interaction (NCI) hypothesis of genome evolution and speciation in polyploid plants. In: Sasakuma T, Kinoshita T (eds) Proceedings of the Kihara Memorial International Symposium on Cytoplasmic Engineering in Wheat, pp 48–53Google Scholar
  26. Goodin MM, Zaitlin D, Naidu RA, Lommel SA (2008) Nicotiana benthamiana: its history and future as a model for plant-pathogen interactions. Mol Plant Microbe Interact 21:1015–1026CrossRefGoogle Scholar
  27. Goodspeed TH (1947) On the evolution of the genus Nicotiana. Proc Natl Acad Sci USA 33:158–171CrossRefPubMedPubMedCentralGoogle Scholar
  28. Goodspeed TH (1954) The genus Nicotiana. Chron Bot 16:1–536Google Scholar
  29. Goossens A, Hakkinen ST, Laakso I, Seppanen-Laakso T, Biondi S, De Sutter V, Lammertyn F, Nuutila AM, Soderlund H, Zabeau M et al (2003) A functional genomics approach toward the understanding of secondary metabolism in plant cells. Proc Natl Acad Sci USA 100:8595–8600CrossRefPubMedPubMedCentralGoogle Scholar
  30. Gregor W, Mette MF, Staginnus C, Matzke MA, Matzke AJM (2004) A distinct endogenous pararetrovirus family in Nicotiana tomentosiformis, a diploid progenitor of polyploid tobacco. Plant Physiol 134:1191–1199CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hakkinen ST, Tilleman S, Swiatek A, De Sutter V, Rischer H, Vanhoutte I, Van Onckelen H, Hilson P, Inze D, Oksman-Caldentey KM et al (2007) Functional characterisation of genes involved in pyridine alkaloid biosynthesis in tobacco. Phytochemistry 68:2773–2785CrossRefPubMedPubMedCentralGoogle Scholar
  32. Harada E, Kim JA, Meyer AJ, Hell R, Clemens S, Choi YE (2010) Expression profiling of tobacco leaf trichomes identifies genes for biotic and abiotic stresses. Plant Cell Physiol 51:1627–1637CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hirakawa H, Shirasawa K, Miyatake K, Nunome T, Negoro S, Ohyama A, Yamaguchi H, Sato S, Isobe S, Tabata S et al (2014) Draft genome sequence of eggplant (Solanum melongena L.): the representative solanum species indigenous to the old world. DNA Res 21:649–660CrossRefPubMedPubMedCentralGoogle Scholar
  34. Holmes FO (1938) Inheritance of resistance to tobacco-mosaic disease in tobacco. Phytopathology 28:553–561Google Scholar
  35. Julio E, Cotucheau J, Decorps C, Volpatti R, Sentenac C, Candresse T, Dorlhac de Borne F (2014) A Eukaryotic translation initiation factor 4E (eIF4E) is responsible for the “va” tobacco recessive resistance to Potyviruses. Plant Mol Biol Report 1–15Google Scholar
  36. Kelly LJ, Leitch AR, Clarkson JJ, Hunter RB, Knapp S, Chase MW (2010) Intragenic recombination events and evidence for hybrid speciation in Nicotiana (Solanaceae). Mol Biol Evol 27:781–799CrossRefGoogle Scholar
  37. Kelly LJ, Leitch AR, Clarkson JJ, Knapp S, Chase MW (2013) Reconstructing the complex evolutionary origin of wild allopolyploid tobaccos (Nicotiana section suaveolentes). Evolution 67:80–94CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kenton A, Parokonny AS, Gleba YY, Bennett MD (1993) Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics. Mol Gen Genet 240:159–169CrossRefGoogle Scholar
  39. Khafizova G, Dobrynin P, Polev D, Matveeva T (2018) Nicotiana glauca whole-genome investigation for cT-DNA study. BMC Res Notes 11:18CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kim S, Park M, Yeom SI, Kim YM, Lee JM, Lee HA, Seo E, Choi J, Cheong K, Kim KT et al (2014) Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 46:270–278CrossRefGoogle Scholar
  41. Kitamura S, Tanaka A, Inoue M (2005) Genomic relationships among Nicotiana species with different ploidy levels revealed by 5S rDNA spacer sequences and FISH/GISH. Genes Genet Syst 80:251–260CrossRefGoogle Scholar
  42. Knapp S, Bohs L, Nee M, Spooner DM (2004a) Solanaceae—a model for linking genomics with biodiversity. Comp Funct Genomics 5:285–291CrossRefPubMedPubMedCentralGoogle Scholar
  43. Knapp S, Chase MW, Clarkson JJ (2004b) Nomenclatural changes and a new sectional classification in Nicotiana (Solanaceae). Taxon 53:73–82CrossRefGoogle Scholar
  44. Koukalova B, Moraes AP, Renny-Byfield S, Matyasek R, Leitch AR, Kovarik A (2010) Fall and rise of satellite repeats in allopolyploids of Nicotiana over c. 5 million years. New Phytol 186:148–160CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kovacova V, Zluvova J, Janousek B, Talianova M, Vyskot B (2014) The evolutionary fate of the horizontally transferred agrobacterial mikimopine synthase gene in the genera Nicotiana and Linaria. PLoS ONE 9:e113872CrossRefPubMedPubMedCentralGoogle Scholar
  46. Kovarik A, Renny-Byfield S, Grandbastien M-A, Leitch A (2012) Evolutionary implications of genome and karyotype restructuring in Nicotiana tabacum L. In: Soltis PS, Soltis DE (eds) Polyploidy and genome evolution. Springer, Berlin Heidelberg, pp 209–224CrossRefGoogle Scholar
  47. Leitch IJ, Bennett MD (2004) Genome downsizing in polyploid plants. Biol J Linn Soc 82:651–663CrossRefGoogle Scholar
  48. Leitch IJ, Hanson L, Lim KY, Kovarik A, Chase MW, Clarkson JJ, Leitch AR (2008) The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae). Ann Bot 101:805–814CrossRefPubMedPubMedCentralGoogle Scholar
  49. Lewis RS (2011) Nicotiana. Wild Crop Relat. Genomic Breed Resour 185–208Google Scholar
  50. Lewis RS, Nicholson JS (2007) Aspects of the evolution of Nicotiana tabacum L. and the status of the United States Nicotiana germplasm collection. Genet Resour Crop Evol 54:727–740CrossRefGoogle Scholar
  51. Lewis RS, Milla SR, Levin JS (2005) Molecular and genetic characterization of Nicotiana glutinosa L. chromosome segments in tobacco mosaic virus-resistant tobacco accessions. Crop Sci 45:2355–2362CrossRefGoogle Scholar
  52. Lewis RS, Linger LR, Wolff MF, Wernsman EA (2007) The negative influence of N-mediated TMV resistance on yield in tobacco: linkage drag versus pleiotropy. Theor Appl Genet 115:169–178CrossRefGoogle Scholar
  53. Lim KY, Matyášek R, Lichtenstein CP, Leitch AR (2000) Molecular cytogenetic analyses and phylogenetic studies in the Nicotiana section Tomentosae. Chromosoma 109:245–258CrossRefPubMedPubMedCentralGoogle Scholar
  54. Lim KY, Matyasek R, Kovarik A, Leitch AR (2004) Genome evolution in allotetraploid Nicotiana. Biol J Linn Soc 82:599–606CrossRefGoogle Scholar
  55. Lim KY, Kovarik A, Matyasek R, Chase MW, Clarkson JJ, Grandbastien MA, Leitch AR (2007) Sequence of events leading to near-complete genome turnover in allopolyploid Nicotiana within five million years. New Phytol 175:756–763CrossRefGoogle Scholar
  56. Luu VT, Schuck S, Kim SG, Weinhold A, Baldwin IT (2015) Jasmonic acid signalling mediates resistance of the wild tobacco Nicotiana attenuata to its native Fusarium, but not Alternaria, fungal pathogens. Plant Cell Env. 38:572–584CrossRefGoogle Scholar
  57. Marks CE (2010) Definition of South Pacific taxa of Nicotiana section Suaveolentes. Muelleria 28:74–84Google Scholar
  58. Marks CE, Ladiges PY (2011) Comparative morphology and phylogeny of Nicotiana section Suaveolentes (Solanaceae) in Australia and the South Pacific. Aust Syst Bot 24:61–86CrossRefGoogle Scholar
  59. Marks CE, Ladiges PY, Newbigin E (2011) Karyotypic variation in Nicotiana section Suaveolentes. Genet Resour Crop Evol 58:797–803CrossRefGoogle Scholar
  60. Martin F, Bovet L, Cordier A, Stanke M, Gunduz I, Peitsch MC, Ivanov NV (2012) Design of a Tobacco Exon Array with application to investigate the differential cadmium accumulation property in two tobacco varieties. BMC Genom 13:674CrossRefGoogle Scholar
  61. Matyasek R, Fulnecek J, Leitch AR, Kovarik A (2011) Analysis of two abundant, highly related satellites in the allotetraploid Nicotiana arentsii using double-strand conformation polymorphism analysis and sequencing. New Phytol 192:747–759CrossRefPubMedPubMedCentralGoogle Scholar
  62. Matyasek R, Renny-Byfield S, Fulneček J, Macas J, Grandbastien M-A, Nichols R, Leitch A, Kovařík A (2012) Next generation sequencing analysis reveals a relationship between rDNA unit diversity and locus number in Nicotiana diploids. BMC Genom 13:722CrossRefGoogle Scholar
  63. Melayah, D, Lim, KY, Bonnivard, E, Chalhoub, B, Dorlhac De Borne, F, Mhiri, C, Leitch, AR, Grandbastien, MA (2004). Distribution of the Tnt1 retrotransposon family in the amphidiploid tobacco (Nicotiana tabacum) and its wild Nicotiana relatives. Biol. J. Linn. Soc. 82, 639–649Google Scholar
  64. Moon H, Nicholson JS (2007) AFLP and SCAR markers linked to tomato spotted wilt virus resistance in tobacco. Crop Sci 47:1887–1894CrossRefGoogle Scholar
  65. Murad L, Lim KY, Christopodulou V, Matyasek R, Lichtenstein CP, Kovarik A, Leitch AR (2002) The origin of tobacco’s T genome is traced to a particular lineage within Nicotiana tomentosiformis (Solanaceae). Am J Bot 89:921–928CrossRefPubMedPubMedCentralGoogle Scholar
  66. Naim F, Nakasugi K, Crowhurst RN, Hilario E, Zwart AB, Hellens RP, Taylor JM, Waterhouse PM, Wood CC (2012) Advanced engineering of lipid metabolism in Nicotiana benthamiana using a draft genome and the V2 viral silencing-suppressor protein. PLoS ONE 7:e52717CrossRefPubMedPubMedCentralGoogle Scholar
  67. Olmstead RG, Bohs L, Migid HA, Santiago-Valentin E, Garcia VF, Collier SM (2008) A molecular phylogeny of the Solanaceae. Taxon 57:1159–1181CrossRefGoogle Scholar
  68. Parisod C, Mhiri C, Lim KY, Clarkson JJ, Chase MW, Leitch AR, Grandbastien M-A (2012) Differential dynamics of transposable elements during long-term diploidization of Nicotiana section Repandae (Solanaceae) allopolyploid genomes. PLoS ONE 7:e50352CrossRefPubMedPubMedCentralGoogle Scholar
  69. Parokonny, A.S., and Kenton, A.Y. (1995). Comparative physical mapping and evolution of the Nicotiana tabacum L. karyotype. pp. 301–320Google Scholar
  70. Petit M, Lim KY, Julio E, Poncet C, Dorlhac de Borne F, Kovarik A, Leitch AR, Grandbastien MA, Mhiri C (2007) Differential impact of retrotransposon populations on the genome of allotetraploid tobacco (Nicotiana tabacum). Mol Genet Genomics 278:1–15CrossRefPubMedPubMedCentralGoogle Scholar
  71. Petit M, Guidat C, Daniel J, Denis E, Montoriol E, Bui QT, Lim KY, Kovarik A, Leitch AR, Grandbastien M-A (2010) Mobilization of retrotransposons in synthetic allotetraploid tobacco. New Phytol 186:135–147CrossRefPubMedPubMedCentralGoogle Scholar
  72. Qin C, Yu C, Shen Y, Fang X, Chen L, Min J, Cheng J, Zhao S, Xu M, Luo Y et al (2014) Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc Natl Acad Sci USA 111:5135–5140CrossRefPubMedPubMedCentralGoogle Scholar
  73. Reed, S.M. (1991). Cytogenetic evolution and aneuploidy in Nicotiana. Chromosome Eng Plants Genet Breed Evol Part B Elsevier Dordr Neth 483–505Google Scholar
  74. Ren N, Timko MP (2001) AFLP analysis of genetic polymorphism and evolutionary relationships among cultivated and wild Nicotiana species. Genome 44:559–571CrossRefPubMedPubMedCentralGoogle Scholar
  75. Sarkinen T, Bohs L, Olmstead RG, Knapp S (2013) A phylogenetic framework for evolutionary study of the nightshades (Solanaceae): a dated 1000-tip tree. BMC Evol Biol 13:214CrossRefPubMedPubMedCentralGoogle Scholar
  76. Sato S, Tabata S, Hirakawa H, Asamizu E, Shirasawa K, Isobe S, Kaneko T, Nakamura Y, Shibata D, Egholm M (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641CrossRefGoogle Scholar
  77. Senthil G, Liu H, Puram VG, Clark A, Stromberg A, Goodin MM (2005) Specific and common changes in Nicotiana benthamiana gene expression in response to infection by enveloped viruses. J Gen Virol 86:2615–2625CrossRefGoogle Scholar
  78. Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043CrossRefPubMedPubMedCentralGoogle Scholar
  79. Sierro N, Battey JND, Ouadi S, Bovet L, Goepfert S, Bakaher N, Peitsch MC, Ivanov NV (2013a) Reference genomes and transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis. Genome Biol 14:R60CrossRefPubMedPubMedCentralGoogle Scholar
  80. Sierro N, van Oeveren J, van Eijk MJ, Martin F, Stormo KE, Peitsch MC, Ivanov NV (2013b) Whole genome profiling physical map and ancestral annotation of tobacco hicks broadleaf. Plant J 75:880–889Google Scholar
  81. Sierro N, Battey JND, Ouadi S, Bakaher N, Bovet L, Willig A, Goepfert S, Peitsch MC, Ivanov NV (2014) The tobacco genome sequence and its comparison with those of tomato and potato. Nat Commun 5:3833Google Scholar
  82. Sierro N, Battey JND, Bovet L, Liedschulte V, Ouadi S, Thomas J, Broye H, Laparra H, Vuarnoz A, Lang G et al (2018) The impact of genome evolution on the allotetraploid Nicotiana rustica—an intriguing story of enhanced alkaloid production. BMC Genom 19:855CrossRefGoogle Scholar
  83. Skalicka K, Lim KY, Matyášek R, Koukalová B, Leitch AR, Kovařík A (2003) Rapid evolution of parental rDNA in a synthetic tobacco allotetraploid line. Am J Bot 90:988–996CrossRefPubMedPubMedCentralGoogle Scholar
  84. Skalicka K, Lim KY, Matyasek R, Matzke M, Leitch AR, Kovarik A (2005) Preferential elimination of repeated DNA sequences from the paternal, Nicotiana tomentosiformis genome donor of a synthetic, allotetraploid tobacco. New Phytol 166:291–303CrossRefGoogle Scholar
  85. Sloan DB (2013) One ring to rule them all? Genome sequencing provides new insights into the ‘master circle’ model of plant mitochondrial DNA structure. New Phytol 200:978–985CrossRefPubMedPubMedCentralGoogle Scholar
  86. Sugiyama Y, Watase Y, Nagase M, Makita N, Yagura S, Hirai A, Sugiura M (2005) The complete nucleotide sequence and multipartite organization of the tobacco mitochondrial genome: comparative analysis of mitochondrial genomes in higher plants. Mol Genet Genomics 272:603–615CrossRefPubMedPubMedCentralGoogle Scholar
  87. Symon DE, Lepschi BJ (2007) A new status in Nicotiana (Solanaceae): N. monoschizocarpa (P. Horton) Symon & Lepschi. J. Adelaide Bot. Gard. 21:92Google Scholar
  88. Tezuka T, Marubashi W (2012) Genes in S and T subgenomes are responsible for hybrid lethality in interspecific hybrids between Nicotiana tabacum and Nicotiana occidentalis. PLoS ONE 7:e36204CrossRefPubMedPubMedCentralGoogle Scholar
  89. Tran HTM, Ramaraj T, Furtado A, Lee LS, Henry RJ (2018) Use of a draft genome of coffee (Coffea arabica) to identify SNPs associated with caffeine content. Plant Biotechnol J 16:1756–1766CrossRefPubMedPubMedCentralGoogle Scholar
  90. TRI (2015). Tobacco Research Institute of the Chinese Academy of Agricultural SciencesGoogle Scholar
  91. USDA (2016). National Plant Germplasm SystemGoogle Scholar
  92. Whitelaw CA, Barbazuk WB, Pertea G, Chan AP, Cheung F, Lee Y, Zheng L, van Heeringen S, Karamycheva S, Bennetzen JL et al (2003) Enrichment of gene-coding sequences in maize by genome filtration. Science 302:2118–2120CrossRefPubMedPubMedCentralGoogle Scholar
  93. Whitham S, Dinesh-Kumar SP, Choi D, Hehl R, Corr C, Baker B (1994) The product of the tobacco mosaic virus resistance gene N: Similarity to toll and the interleukin-1 receptor. Cell 78:1101–1115CrossRefPubMedPubMedCentralGoogle Scholar
  94. Wikstrom N, Savolainen V, Chase MW (2001) Evolution of the angiosperms: calibrating the family tree. Proc Biol Sci 268:2211–2220CrossRefPubMedPubMedCentralGoogle Scholar
  95. Wu F, Eannetta NT, Xu Y, Plieske J, Ganal M, Pozzi C, Bakaher N, Tanksley SD (2010) COSII genetic maps of two diploid Nicotiana species provide a detailed picture of synteny with tomato and insights into chromosome evolution in tetraploid N. tabacum. Theor Appl Genet 120:809–827CrossRefGoogle Scholar
  96. Xu X, Pan S, Cheng S, Zhang B, Mu D, Ni P, Zhang G, Yang S, Li R, Wang J (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189CrossRefPubMedPubMedCentralGoogle Scholar
  97. Xu S, Brockmoller T, Navarro-Quezada A, Kuhl H, Gase K, Ling Z, Zhou W, Kreitzer C, Stanke M, Tang H et al (2017) Wild tobacco genomes reveal the evolution of nicotine biosynthesis. Proc Natl Acad Sci USA 114:6133–6138CrossRefPubMedPubMedCentralGoogle Scholar
  98. Yang S-J, Carter SA, Cole AB, Cheng N-H, Nelson RS (2004) A natural variant of a host RNA-dependent RNA polymerase is associated with increased susceptibility to viruses by Nicotiana benthamiana. Proc Natl Acad Sci USA 101:6297–6302CrossRefPubMedPubMedCentralGoogle Scholar
  99. Yang BC, Xiao BG, Chen XJ, Shi CH (2007) Assessing the genetic diversity of tobacco germplasm using intersimple sequence repeat and inter-retrotransposon amplification polymorphism markers. Ann Appl Biol 150:393–401CrossRefGoogle Scholar
  100. Yarnes SC, Ashrafi H, Reyes-Chin-Wo S, Hill TA, Stoffel KM, Van Deynze A (2013) Identification of QTLs for capsaicinoids, fruit quality, and plant architecture-related traits in an interspecific Capsicum RIL population. Genome 56:61–74CrossRefPubMedPubMedCentralGoogle Scholar
  101. Yukawa M, Tsudzuki T, Sugiura M (2006) The chloroplast genome of Nicotiana sylvestris and Nicotiana tomentosiformis: complete sequencing confirms that the Nicotiana sylvestris progenitor is the maternal genome donor of Nicotiana tabacum. Mol Genet Genomics 275:367–373CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.PMI R&DPhilip Morris Products S.A.NeuchâtelSwitzerland

Personalised recommendations