Advertisement

Paving the Road for Mesenchymal Stem Cell-Derived Exosome Therapy in Bronchopulmonary Dysplasia and Pulmonary Hypertension

  • Vincent Yeung
  • Gareth R. Willis
  • Elizabeth Taglauer
  • S. Alex Mitsialis
  • Stella KourembanasEmail author
Chapter

Abstract

Bronchopulmonary dysplasia (BPD) is a chronic neonatal lung disease characterized by inflammation and arrest of alveolarization. Its common sequela, pulmonary hypertension (PH), presents with elevated pulmonary vascular resistance associated with remodeling of the pulmonary arterioles. Despite notable advancements in neonatal medicine, there is a severe lack of curative treatments to help manage the progressive nature of these diseases. Numerous studies in preclinical models of BPD and PH have demonstrated that therapies based on mesenchymal stem/stromal cells (MSCs) can resolve pulmonary inflammation and ameliorate the severity of disease. Recent evidence suggests that novel, cell-free approaches based on MSC-derived exosomes (MEx) might represent a compelling therapeutic alternative offering major advantages over treatments based on MSC transplantation. Here, we will discuss the development of MSC-based therapies, stressing the centrality of paracrine action as the actual vector of MSC therapeutic functionality, focusing on MEx. We will briefly present our current understanding of the biogenesis and secretion of MEx, and discuss potential mechanisms by which they afford such beneficial effects, including immunomodulation and restoration of homeostasis in diseased states. We will also review ongoing clinical trials using MSCs as treatment for BPD that pave the way for bringing cell-free, MEx-based therapeutics from the bench to the NICU setting.

Keywords

Bronchopulmonary dysplasia (BPD) Exosomes Extracellular vesicles (EVs) Inflammation Mesenchymal stem cells (MSCs) MSC exosomes (MEx) Pulmonary hypertension (PH) 

Notes

Acknowledgments

The authors express their appreciation to Dr. Angeles Fernandez-Gonzalez for critical reading of the final manuscript. Support was provided in part by the American Thoracic Society Research Grant (GRW); NIH Grant R01 HL055454 (SK); United Therapeutics Research Grant (SK & SAM); and Charles H. Hood Foundation Major Grants Initiative (SK).

References

  1. 1.
    Luu T, Katz S, Leeson P, Thébaud B, Nuyt A-M. Preterm birth: risk factor for early-onset chronic diseases. CMAJ. 2016;188(10):736–40.CrossRefGoogle Scholar
  2. 2.
    Polin RA, Carlo WA, Committee on F, Newborn, American Academy of Pediatrics. Surfactant replacement therapy for preterm and term neonates with respiratory distress. Pediatrics. 2014;133(1):156–63.  https://doi.org/10.1542/peds.2013-3443.CrossRefPubMedGoogle Scholar
  3. 3.
    Willis GR, Kourembanas S, Mitsialis SA. Therapeutic applications of extracellular vesicles: perspectives from newborn medicine. In: Kuo WP, Jia S, editors. Extracellular vesicles: methods and protocols. New York, NY: Springer New York; 2017. p. 409–32.  https://doi.org/10.1007/978-1-4939-7253-1_34.CrossRefGoogle Scholar
  4. 4.
    Stoll BJ, Hansen NI, Bell EF, Walsh MC, Carlo WA, Shankaran S, Laptook AR, Sanchez PJ, Van Meurs KP, Wyckoff M, Das A, Hale EC, Ball MB, Newman NS, Schibler K, Poindexter BB, Kennedy KA, Cotten CM, Watterberg KL, D'Angio CT, DeMauro SB, Truog WE, Devaskar U, Higgins RD, Eunice Kennedy Shriver National Institute of Child H, Human Development Neonatal Research Network. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993–2012. JAMA. 2015;314(10):1039–51.  https://doi.org/10.1001/jama.2015.10244.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Doyle LW, Carse E, Adams AM, Ranganathan S, Opie G, JLY C, Victorian Infant Collaborative Study G. Ventilation in extremely preterm infants and respiratory function at 8 years. N Engl J Med. 2017;377(4):329–37.  https://doi.org/10.1056/NEJMoa1700827.CrossRefPubMedGoogle Scholar
  6. 6.
    D'Angio C, Maniscalco W. Bronchopulmonary dysplasia in preterm infants: pathophysiology and management strategies. Paediatr Drugs. 2004;6(5):303–30.CrossRefGoogle Scholar
  7. 7.
    Davidson LM, Berkelhamer SK. Bronchopulmonary dysplasia: chronic lung disease of infancy and long-term pulmonary outcomes. J Clin Med. 2017;6(4):1–20.  https://doi.org/10.3390/jcm6010004.CrossRefGoogle Scholar
  8. 8.
    Moschino L, Stocchero M, Filippone M, Carraro S, Baraldi E. Longitudinal assessment of lung function in survivors of Bronchopulmonary dysplasia from birth to adulthood. The Padova BPD study. Am J Respir Crit Care Med. 2018;198(1):134–7.  https://doi.org/10.1164/rccm.201712-2599LE.CrossRefPubMedGoogle Scholar
  9. 9.
    Al-Ghanem G, Shah P, Thomas S, Banfield L, El Helou S, Fusch C, Mukerji A. Bronchopulmonary dysplasia and pulmonary hypertension: a meta-analysis. J Perinatol. 2017;37(4):414–9.  https://doi.org/10.1038/jp.2016.250.CrossRefPubMedGoogle Scholar
  10. 10.
    Berkelhamer SK, Mestan KK, Steinhorn R. An update on the diagnosis and management of bronchopulmonary dysplasia (BPD)-associated pulmonary hypertension. Semin Perinatol. 2018;42(7):432–43.  https://doi.org/10.1053/j.semperi.2018.09.005.CrossRefPubMedGoogle Scholar
  11. 11.
    Rysavy MA, Marlow N, Doyle LW, Tyson JE, Serenius F, Iams JD, Stoll BJ, Barrington KJ, Bell EF. Reporting outcomes of extremely preterm births. Pediatrics. 2016;138(3):1–7.  https://doi.org/10.1542/peds.2016-0689.CrossRefGoogle Scholar
  12. 12.
    Kolios G, Moodley Y. Introduction to stem cells and regenerative medicine. Respiration. 2013;85(1):3–10.  https://doi.org/10.1159/000345615.CrossRefPubMedGoogle Scholar
  13. 13.
    Borghesi A, Cova C, Gazzolo D, Stronati M. Stem cell therapy for neonatal diseases associated with preterm birth. J Clin Neonatol. 2013;2(1):1–7.  https://doi.org/10.4103/2249-4847.109230.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Thomson J, Itskovitz-Eldor J, Shapiro S, Waknitz M, Swiergiel J, Marshall V, Jones J. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.CrossRefGoogle Scholar
  15. 15.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.  https://doi.org/10.1016/j.cell.2006.07.024.CrossRefGoogle Scholar
  16. 16.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.  https://doi.org/10.1016/j.cell.2007.11.019.CrossRefGoogle Scholar
  17. 17.
    Roszell B, Mondrinos M, Seaton A, Simons D, Koutzaki S, Fong G, Lelkes P, Finck C. Efficient derivation of alveolar type II cells from embryonic stem cells for in vivo application. Tissue Eng Part A. 2009;15(11):3351–65.CrossRefGoogle Scholar
  18. 18.
    Huang SX, Islam MN, O'Neill J, Hu Z, Yang YG, Chen YW, Mumau M, Green MD, Vunjak-Novakovic G, Bhattacharya J, Snoeck HW. Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nat Biotechnol. 2014;32(1):84–91.  https://doi.org/10.1038/nbt.2754.CrossRefPubMedGoogle Scholar
  19. 19.
    Jacob A, Morley M, Hawkins F, McCauley KB, Jean JC, Heins H, Na CL, Weaver TE, Vedaie M, Hurley K, Hinds A, Russo SJ, Kook S, Zacharias W, Ochs M, Traber K, Quinton LJ, Crane A, Davis BR, White FV, Wambach J, Whitsett JA, Cole FS, Morrisey EE, Guttentag SH, Beers MF, Kotton DN. Differentiation of human pluripotent stem cells into functional lung alveolar epithelial cells. Cell Stem Cell. 2017;21(4):472–88 . e410.  https://doi.org/10.1016/j.stem.2017.08.014.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Shafa M, Ionescu LI, Vadivel A, Collins JJP, Xu L, Zhong S, Kang M, de Caen G, Daneshmand M, Shi J, Fu KZ, Qi A, Wang Y, Ellis J, Stanford WL, Thebaud B. Human induced pluripotent stem cell-derived lung progenitor and alveolar epithelial cells attenuate hyperoxia-induced lung injury. Cytotherapy. 2018;20(1):108–25.  https://doi.org/10.1016/j.jcyt.2017.09.003.CrossRefPubMedGoogle Scholar
  21. 21.
    Lo B, Parham L. Ethical issues in stem cell research. Endocr Rev. 2009;30(3):204–13.  https://doi.org/10.1210/er.2008-0031.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Gutierrez-Aranda I, Ramos-Mejia V, Bueno C, Munoz-Lopez M, Real PJ, Macia A, Sanchez L, Ligero G, Garcia-Parez JL, Menendez P. Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. Stem Cells. 2010;28(9):1568–70.  https://doi.org/10.1002/stem.471.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Shi Y, Inoue H, Wu JC, Yamanaka S. Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov. 2017;16(2):115–30.  https://doi.org/10.1038/nrd.2016.245.CrossRefPubMedGoogle Scholar
  24. 24.
    Barkauskas CE, Chung MI, Fioret B, Gao X, Katsura H, Hogan BL. Lung organoids: current uses and future promise. Development. 2017;144(6):986–97.  https://doi.org/10.1242/dev.140103.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ghaedi M, Calle EA, Mendez JJ, Gard AL, Balestrini J, Booth A, Bove PF, Gui L, White ES, Niklason LE. Human iPS cell-derived alveolar epithelium repopulates lung extracellular matrix. J Clin Invest. 2013;123(11):4950–62.  https://doi.org/10.1172/JCI68793.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Badylak SF, Taylor D, Uygun K. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng. 2011;13:27–53.  https://doi.org/10.1146/annurev-bioeng-071910-124743.CrossRefPubMedGoogle Scholar
  27. 27.
    Wagner DE, Bonenfant NR, Sokocevic D, DeSarno MJ, Borg ZD, Parsons CS, Brooks EM, Platz JJ, Khalpey ZI, Hoganson DM, Deng B, Lam YW, Oldinski RA, Ashikaga T, Weiss DJ. Three-dimensional scaffolds of acellular human and porcine lungs for high throughput studies of lung disease and regeneration. Biomaterials. 2014;35(9):2664–79.  https://doi.org/10.1016/j.biomaterials.2013.11.078.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Titomanlio L, Kavelaars A, Dalous J, Mani S, El Ghouzzi V, Heijnen C, Baud O, Gressens P. Stem cell therapy for neonatal brain injury: perspectives and challenges. Ann Neurol. 2011;70(5):698–712.  https://doi.org/10.1002/ana.22518.CrossRefPubMedGoogle Scholar
  29. 29.
    Bennet L, Tan S, Van den Heuij L, Derrick M, Groenendaal F, van Bel F, Juul S, Back SA, Northington F, Robertson NJ, Mallard C, Gunn AJ. Cell therapy for neonatal hypoxia-ischemia and cerebral palsy. Ann Neurol. 2012;71(5):589–600.  https://doi.org/10.1002/ana.22670.CrossRefPubMedGoogle Scholar
  30. 30.
    Mitsialis SA, Kourembanas S. Stem cell-based therapies for the newborn lung and brain: possibilities and challenges. Semin Perinatol. 2016;40(3):138–51.  https://doi.org/10.1053/j.semperi.2015.12.002.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kang M, Thebaud B. Stem cell biology and regenerative medicine for neonatal lung diseases. Pediatr Res. 2018;83(1–2):291–7.  https://doi.org/10.1038/pr.2017.232.CrossRefPubMedGoogle Scholar
  32. 32.
    Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner J. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275(5302):964–7.CrossRefGoogle Scholar
  33. 33.
    Baker CD, Seedorf GJ, Wisniewski BL, Black CP, Ryan SL, Balasubramaniam V, Abman SH. Endothelial colony-forming cell conditioned media promote angiogenesis in vitro and prevent pulmonary hypertension in experimental bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2013;305(1):73–81.  https://doi.org/10.1152/ajplung.00400.2012.CrossRefGoogle Scholar
  34. 34.
    Alphonse RS, Vadivel A, Fung M, Shelley WC, Critser PJ, Ionescu L, O'Reilly M, Ohls RK, McConaghy S, Eaton F, Zhong S, Yoder M, Thebaud B. Existence, functional impairment, and lung repair potential of endothelial colony-forming cells in oxygen-induced arrested alveolar growth. Circulation. 2014;129(21):2144–57.  https://doi.org/10.1161/CIRCULATIONAHA.114.009124.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Firsova AB, Bird AD, Abebe D, Ng J, Mollard R, Cole TJ. Fresh noncultured endothelial progenitor cells improve neonatal lung hyperoxia-induced alveolar injury. Stem Cells Transl Med. 2017;6(12):2094–105.  https://doi.org/10.1002/sctm.17-0093.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ilancheran S, Michalska A, Peh G, Wallace EM, Pera M, Manuelpillai U. Stem cells derived from human fetal membranes display multilineage differentiation potential. Biol Reprod. 2007;77(3):577–88.  https://doi.org/10.1095/biolreprod.106.055244.CrossRefPubMedGoogle Scholar
  37. 37.
    Vosdoganes P, Hodges RJ, Lim R, Westover AJ, Acharya RY, Wallace EM, Moss TJ. Human amnion epithelial cells as a treatment for inflammation-induced fetal lung injury in sheep. Am J Obstet Gynecol. 2011;205(156):26–33.  https://doi.org/10.1016/j.ajog.2011.03.054.CrossRefGoogle Scholar
  38. 38.
    Vosdoganes P, Wallace EM, Chan ST, Acharya R, Moss TJ, Lim R. Human amnion epithelial cells repair established lung injury. Cell Transplant. 2013;22(8):1337–49.  https://doi.org/10.3727/096368912X657657.CrossRefPubMedGoogle Scholar
  39. 39.
    Hodges RJ, Jenkin G, Hooper SB, Allison B, Lim R, Dickinson H, Miller SL, Vosdoganes P, Wallace EM. Human amnion epithelial cells reduce ventilation-induced preterm lung injury in fetal sheep. Am J Obstet Gynecol. 2012;206(448):8–15.  https://doi.org/10.1016/j.ajog.2012.02.038.CrossRefGoogle Scholar
  40. 40.
    Melville JM, McDonald CA, Bischof RJ, Polglase GR, Lim R, Wallace EM, Jenkin G, Moss TJ. Human amnion epithelial cells modulate the inflammatory response to ventilation in preterm lambs. PLoS One. 2017;12(3):1–15.  https://doi.org/10.1371/journal.pone.0173572.CrossRefGoogle Scholar
  41. 41.
    Zhu D, Tan J, Maleken AS, Muljadi R, Chan ST, Lau SN, Elgass K, Leaw B, Mockler J, Chambers D, Leeman KT, Kim CF, Wallace EM, Lim R. Human amnion cells reverse acute and chronic pulmonary damage in experimental neonatal lung injury. Stem Cell Res Ther. 2017;8(257):1–24.  https://doi.org/10.1186/s13287-017-0689-9.CrossRefGoogle Scholar
  42. 42.
    Friedenstein A, Gorskaja J, Kulagina N. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol. 1976;4(5):267.PubMedGoogle Scholar
  43. 43.
    Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13(12):4279–95.  https://doi.org/10.1091/mbc.e02-02-0105.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Gronthos S, Mankani M, Brahim J, Robey P, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 2000;97(25):13625–30.CrossRefGoogle Scholar
  45. 45.
    Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, Fu YS, Lai MC, Chen CC. Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells. 2004;22(7):1330–7.  https://doi.org/10.1634/stemcells.2004-0013.CrossRefPubMedGoogle Scholar
  46. 46.
    Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.  https://doi.org/10.1080/14653240600855905.CrossRefGoogle Scholar
  47. 47.
    Lindner U, Kramer J, Rohwedel J, Schlenke P. Mesenchymal stem or stromal cells: toward a better understanding of their biology? Transfus Med Hemother. 2010;37(2):75–83.  https://doi.org/10.1159/000290897.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Phinney DG. Functional heterogeneity of mesenchymal stem cells: implications for cell therapy. J Cell Biochem. 2012;113(9):2806–12.  https://doi.org/10.1002/jcb.24166.CrossRefPubMedGoogle Scholar
  49. 49.
    Schaffler A, Buchler C. Concise review: adipose tissue-derived stromal cells—basic and clinical implications for novel cell-based therapies. Stem Cells. 2007;25(4):818–27.  https://doi.org/10.1634/stemcells.2006-0589.CrossRefPubMedGoogle Scholar
  50. 50.
    Strioga M, Viswanathan S, Darinskas A, Slaby O, Michalek J. Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev. 2012;21(14):2724–52.  https://doi.org/10.1089/scd.2011.0722.CrossRefPubMedGoogle Scholar
  51. 51.
    Davies JE, Walker JT, Keating A. Concise review: Wharton’s Jelly: the rich, but enigmatic, source of mesenchymal stromal cells. Stem Cells Transl Med. 2017;6(7):1620–30.  https://doi.org/10.1002/sctm.16-0492.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Reis M, McDonald D, Nicholson L, Godthardt K, Knobel S, Dickinson AM, Filby A, Wang XN. Global phenotypic characterisation of human platelet lysate expanded MSCs by high-throughput flow cytometry. Sci Rep. 2018;8(3907):1–12.  https://doi.org/10.1038/s41598-018-22326-5.CrossRefGoogle Scholar
  53. 53.
    McLeod CM, Mauck RL. On the origin and impact of mesenchymal stem cell heterogeneity: new insights and emerging tools for single cell analysis. Eur Cell Mater. 2017;34:217–31.  https://doi.org/10.22203/eCM.v034a14.CrossRefPubMedGoogle Scholar
  54. 54.
    Weiss DJ. Concise review: current status of stem cells and regenerative medicine in lung biology and diseases. Stem Cells. 2014;32(1):16–25.  https://doi.org/10.1002/stem.1506.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Foster WS, Suen CM, Stewart DJ. Regenerative cell and tissue-based therapies for pulmonary arterial hypertension. Can J Cardiol. 2014;30(11):1350–60.  https://doi.org/10.1016/j.cjca.2014.08.022.CrossRefPubMedGoogle Scholar
  56. 56.
    Kourembanas S. Stem cell-based therapy for newborn lung and brain injury: feasible, safe, and the next therapeutic breakthrough? J Pediatr. 2014;164(5):954–6.  https://doi.org/10.1016/j.jpeds.2014.01.064.CrossRefPubMedGoogle Scholar
  57. 57.
    Alvarez D, Levine M, Rojas M. Regenerative medicine in the treatment of idiopathic pulmonary fibrosis: current position. Stem Cells Cloning. 2015;8:61–5.  https://doi.org/10.2147/SCCAA.S49801.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Suen CM, Zhai A, Lalu MM, Welsh C, Levac BM, Fergusson D, McIntyre L, Stewart DJ. Efficacy and safety of regenerative cell therapy for pulmonary arterial hypertension in animal models: a preclinical systematic review protocol. Syst Rev. 2016;5:89.  https://doi.org/10.1186/s13643-016-0265-x.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Broekman W, Khedoe P, Schepers K, Roelofs H, Stolk J, Hiemstra PS. Mesenchymal stromal cells: a novel therapy for the treatment of chronic obstructive pulmonary disease? Thorax. 2018;73(6):565–74.  https://doi.org/10.1136/thoraxjnl-2017-210672.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Ortiz LA, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N, Phinney DG. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci U S A. 2003;100(14):8407–11.  https://doi.org/10.1073/pnas.1432929100.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Rojas M, Xu J, Woods CR, Mora AL, Spears W, Roman J, Brigham KL. Bone marrow-derived mesenchymal stem cells in repair of the injured lung. Am J Respir Cell Mol Biol. 2005;33(2):145–52.  https://doi.org/10.1165/rcmb.2004-0330OC.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Moodley Y, Atienza D, Manuelpillai U, Samuel CS, Tchongue J, Ilancheran S, Boyd R, Trounson A. Human umbilical cord mesenchymal stem cells reduce fibrosis of bleomycin-induced lung injury. Am J Pathol. 2009;175(1):303–13.  https://doi.org/10.2353/ajpath.2009.080629.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Foskett AM, Bazhanov N, Ti X, Tiblow A, Bartosh TJ, Prockop DJ. Phase-directed therapy: TSG-6 targeted to early inflammation improves bleomycin-injured lungs. Am J Physiol Lung Cell Mol Physiol. 2014;306(2):L120–31.  https://doi.org/10.1152/ajplung.00240.2013.CrossRefPubMedGoogle Scholar
  64. 64.
    Srour N, Thebaud B. Mesenchymal stromal cells in animal Bleomycin pulmonary fibrosis models: a systematic review. Stem Cells Transl Med. 2015;4(12):1500–10.  https://doi.org/10.5966/sctm.2015-0121.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Zhao YD, Courtman DW, Deng Y, Kugathasan L, Zhang Q, Stewart DJ. Rescue of monocrotaline-induced pulmonary arterial hypertension using bone marrow-derived endothelial-like progenitor cells: efficacy of combined cell and eNOS gene therapy in established disease. Circ Res. 2005;96(4):442–50.  https://doi.org/10.1161/01.RES.0000157672.70560.7b.CrossRefPubMedGoogle Scholar
  66. 66.
    Kanki-Horimoto S, Horimoto H, Mieno S, Kishida K, Watanabe F, Furuya E, Katsumata T. Implantation of mesenchymal stem cells overexpressing endothelial nitric oxide synthase improves right ventricular impairments caused by pulmonary hypertension. Circulation. 2006;114(1 Suppl):I181–5.  https://doi.org/10.1161/CIRCULATIONAHA.105.001487.CrossRefPubMedGoogle Scholar
  67. 67.
    Spees JL, Whitney MJ, Sullivan DE, Lasky JA, Laboy M, Ylostalo J, Prockop DJ. Bone marrow progenitor cells contribute to repair and remodeling of the lung and heart in a rat model of progressive pulmonary hypertension. FASEB J. 2008;22(4):1226–36.  https://doi.org/10.1096/fj.07-8076com.CrossRefPubMedGoogle Scholar
  68. 68.
    Baber SR, Deng W, Master RG, Bunnell BA, Taylor BK, Murthy SN, Hyman AL, Kadowitz PJ. Intratracheal mesenchymal stem cell administration attenuates monocrotaline-induced pulmonary hypertension and endothelial dysfunction. Am J Physiol Heart Circ Physiol. 2007;292(2):1120–8.  https://doi.org/10.1152/ajpheart.00173.2006.CrossRefGoogle Scholar
  69. 69.
    Umar S, de Visser YP, Steendijk P, Schutte CI, el Laghmani H, Wagenaar GT, Bax WH, Mantikou E, Pijnappels DA, Atsma DE, Schalij MJ, van der Wall EE, van der Laarse A. Allogenic stem cell therapy improves right ventricular function by improving lung pathology in rats with pulmonary hypertension. Am J Physiol Heart Circ Physiol. 2009;297(5):1606–16.  https://doi.org/10.1152/ajpheart.00590.2009.CrossRefGoogle Scholar
  70. 70.
    Liang OD, Mitsialis SA, Chang MS, Vergadi E, Lee C, Aslam M, Fernandez-Gonzalez A, Liu X, Baveja R, Kourembanas S. Mesenchymal stromal cells expressing heme oxygenase-1 reverse pulmonary hypertension. Stem Cells. 2011;29(1):99–107.  https://doi.org/10.1002/stem.548.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Aslam M, Baveja R, Liang OD, Fernandez-Gonzalez A, Lee C, Mitsialis SA, Kourembanas S. Bone marrow stromal cells attenuate lung injury in a murine model of neonatal chronic lung disease. Am J Respir Crit Care Med. 2009;180(11):1122–30.  https://doi.org/10.1164/rccm.200902-0242OC.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    van Haaften T, Byrne R, Bonnet S, Rochefort GY, Akabutu J, Bouchentouf M, Rey-Parra GJ, Galipeau J, Haromy A, Eaton F, Chen M, Hashimoto K, Abley D, Korbutt G, Archer SL, Thebaud B. Airway delivery of mesenchymal stem cells prevents arrested alveolar growth in neonatal lung injury in rats. Am J Respir Crit Care Med. 2009;180(11):1131–42.  https://doi.org/10.1164/rccm.200902-0179OC.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Chang YS, Choi SJ, Ahn SY, Sung DK, Sung SI, Yoo HS, Oh WI, Park WS. Timing of umbilical cord blood derived mesenchymal stem cells transplantation determines therapeutic efficacy in the neonatal hyperoxic lung injury. PLoS One. 2013;8(1):1–11.  https://doi.org/10.1371/journal.pone.0052419.CrossRefGoogle Scholar
  74. 74.
    Pierro M, Ionescu L, Montemurro T, Vadivel A, Weissmann G, Oudit G, Emery D, Bodiga S, Eaton F, Peault B, Mosca F, Lazzari L, Thebaud B. Short-term, long-term and paracrine effect of human umbilical cord-derived stem cells in lung injury prevention and repair in experimental bronchopulmonary dysplasia. Thorax. 2013;68(5):475–84.  https://doi.org/10.1136/thoraxjnl-2012-202323.CrossRefPubMedGoogle Scholar
  75. 75.
    Vergadi E, Chang MS, Lee C, Liang OD, Liu X, Fernandez-Gonzalez A, Mitsialis SA, Kourembanas S. Early macrophage recruitment and alternative activation are critical for the later development of hypoxia-induced pulmonary hypertension. Circulation. 2011;123(18):1986–95.  https://doi.org/10.1161/CIRCULATIONAHA.110.978627.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Kotton DN, Ma BY, Cardoso WV, Sanderson EA, Summer RS, Williams MC, Fine A. Bone marrow-derived cells as progenitors of lung alveolar epithelium. Development. 2001;128(24):5181–8.PubMedGoogle Scholar
  77. 77.
    Kotton DN, Fine A. Derivation of lung epithelium from bone marrow cells. Cytotherapy. 2003;5(2):169–73.  https://doi.org/10.1080/14653240310001073.CrossRefPubMedGoogle Scholar
  78. 78.
    Aliotta JM, Passero M, Meharg J, Klinger J, Dooner MS, Pimentel J, Quesenberry PJ. Stem cells and pulmonary metamorphosis: new concepts in repair and regeneration. J Cell Physiol. 2005;204(3):725–41.  https://doi.org/10.1002/jcp.20318.CrossRefPubMedGoogle Scholar
  79. 79.
    Hansmann G, Fernandez-Gonzalez A, Aslam M, Vitali SH, Martin T, Mitsialis SA, Kourembanas S. Mesenchymal stem cell-mediated reversal of bronchopulmonary dysplasia and associated pulmonary hypertension. Pulm Circ. 2012;2(2):170–81.  https://doi.org/10.4103/2045-8932.97603.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Abman SH, Matthay MA. Mesenchymal stem cells for the prevention of bronchopulmonary dysplasia: delivering the secretome. Am J Respir Crit Care Med. 2009;180(11):1039–41.  https://doi.org/10.1164/rccm.200909-1330ED.CrossRefPubMedGoogle Scholar
  81. 81.
    Lee JW, Fang X, Krasnodembskaya A, Howard JP, Matthay MA. Concise review: Mesenchymal stem cells for acute lung injury: role of paracrine soluble factors. Stem Cells. 2011;29(6):913–9.  https://doi.org/10.1002/stem.643.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Timmers L, Lim SK, Arslan F, Armstrong JS, Hoefer IE, Doevendans PA, Piek JJ, El Oakley RM, Choo A, Lee CN, Pasterkamp G, de Kleijn DP. Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. Stem Cell Res. 2007;1(2):129–37.  https://doi.org/10.1016/j.scr.2008.02.002.CrossRefPubMedGoogle Scholar
  83. 83.
    Patel KM, Crisostomo P, Lahm T, Markel T, Herring C, Wang M, Meldrum KK, Lillemoe KD, Meldrum DR. Mesenchymal stem cells attenuate hypoxic pulmonary vasoconstriction by a paracrine mechanism. J Surg Res. 2007;143(2):281–5.  https://doi.org/10.1016/j.jss.2006.11.006.CrossRefPubMedGoogle Scholar
  84. 84.
    Curley GF, Hayes M, Ansari B, Shaw G, Ryan A, Barry F, O'Brien T, O'Toole D, Laffey JG. Mesenchymal stem cells enhance recovery and repair following ventilator-induced lung injury in the rat. Thorax. 2012;67(6):496–501.  https://doi.org/10.1136/thoraxjnl-2011-201059.CrossRefPubMedGoogle Scholar
  85. 85.
    Augustine S, Avey MT, Harrison B, Locke T, Ghannad M, Moher D, Thebaud B. Mesenchymal stromal cell therapy in bronchopulmonary dysplasia: systematic review and meta-analysis of preclinical studies. Stem Cells Transl Med. 2017;6(12):2079–93.  https://doi.org/10.1002/sctm.17-0126.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Iyer SS, Rojas M. Anti-inflammatory effects of mesenchymal stem cells: novel concept for future therapies. Expert Opin Biol Ther. 2008;8(5):569–81.  https://doi.org/10.1517/14712598.8.5.569.CrossRefPubMedGoogle Scholar
  87. 87.
    Prockop DJ. Concise review: two negative feedback loops place mesenchymal stem/stromal cells at the center of early regulators of inflammation. Stem Cells. 2013;31(10):2042–6.  https://doi.org/10.1002/stem.1400.CrossRefPubMedGoogle Scholar
  88. 88.
    Lathrop MJ, Brooks EM, Bonenfant NR, Sokocevic D, Borg ZD, Goodwin M, Loi R, Cruz F, Dunaway CW, Steele C, Weiss DJ. Mesenchymal stromal cells mediate Aspergillus hyphal extract-induced allergic airway inflammation by inhibition of the Th17 signaling pathway. Stem Cells Transl Med. 2014;3(2):194–205.  https://doi.org/10.5966/sctm.2013-0061.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Meirelles Lda S, Fontes AM, Covas DT, Caplan AI. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev. 2009;20(5–6):419–27.  https://doi.org/10.1016/j.cytogfr.2009.10.002.CrossRefPubMedGoogle Scholar
  90. 90.
    Ortiz LA, Dutreil M, Fattman C, Pandey AC, Torres G, Go K, Phinney DG. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci U S A. 2007;104(26):11002–7.  https://doi.org/10.1073/pnas.0704421104.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Lee RH, Yu JM, Foskett AM, Peltier G, Reneau JC, Bazhanov N, Oh JY, Prockop DJ. TSG-6 as a biomarker to predict efficacy of human mesenchymal stem/progenitor cells (hMSCs) in modulating sterile inflammation in vivo. Proc Natl Acad Sci U S A. 2014;111(47):16766–71.  https://doi.org/10.1073/pnas.1416121111.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Colombo M, Raposo G, Thery C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–89.  https://doi.org/10.1146/annurev-cellbio-101512-122326.CrossRefPubMedGoogle Scholar
  93. 93.
    Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200(4):373–83.  https://doi.org/10.1083/jcb.201211138.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Gould SJ, Raposo G. As we wait: coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles. 2013;2(20389):1–3.  https://doi.org/10.3402/jev.v2i0.20389.CrossRefGoogle Scholar
  95. 95.
    Lotvall J, Hill AF, Hochberg F, Buzas EI, Di Vizio D, Gardiner C, Gho YS, Kurochkin IV, Mathivanan S, Quesenberry P, Sahoo S, Tahara H, Wauben MH, Witwer KW, Thery C. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles. 2014;3(26913):1–6.  https://doi.org/10.3402/jev.v3.26913.CrossRefGoogle Scholar
  96. 96.
    Witwer KW, Soekmadji C, Hill AF, Wauben MH, Buzas EI, Di Vizio D, Falcon-Perez JM, Gardiner C, Hochberg F, Kurochkin IV, Lotvall J, Mathivanan S, Nieuwland R, Sahoo S, Tahara H, Torrecilhas AC, Weaver AM, Yin H, Zheng L, Gho YS, Quesenberry P, Thery C. Updating the MISEV minimal requirements for extracellular vesicle studies: building bridges to reproducibility. J Extracell Vesicles. 2017;6(1):1–8.  https://doi.org/10.1080/20013078.2017.1396823.CrossRefGoogle Scholar
  97. 97.
    Zhang H, Freitas D, Kim HS, Fabijanic K, Li Z, Chen H, Mark MT, Molina H, Martin AB, Bojmar L, Fang J, Rampersaud S, Hoshino A, Matei I, Kenific CM, Nakajima M, Mutvei AP, Sansone P, Buehring W, Wang H, Jimenez JP, Cohen-Gould L, Paknejad N, Brendel M, Manova-Todorova K, Magalhaes A, Ferreira JA, Osorio H, Silva AM, Massey A, Cubillos-Ruiz JR, Galletti G, Giannakakou P, Cuervo AM, Blenis J, Schwartz R, Brady MS, Peinado H, Bromberg J, Matsui H, Reis CA, Lyden D. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat Cell Biol. 2018;20(3):332–43.  https://doi.org/10.1038/s41556-018-0040-4.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Gould G, Lippincott-Schwartz J. New roles for endosomes: from vesicular carriers to multi-purpose platforms. Nat Rev Mol Cell Biol. 2009;10(4):287–92.CrossRefGoogle Scholar
  99. 99.
    Henne WM, Buchkovich NJ, Emr SD. The ESCRT pathway. Dev Cell. 2011;21(1):77–91.  https://doi.org/10.1016/j.devcel.2011.05.015.CrossRefPubMedGoogle Scholar
  100. 100.
    Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol. 2009;10(8):513–25.  https://doi.org/10.1038/nrm2728.CrossRefPubMedGoogle Scholar
  101. 101.
    Stenmark H, Olkkonen VM. The Rab GTPase family. Genome Biol. 2001;2(5):1–7.CrossRefGoogle Scholar
  102. 102.
    Jahn R, Scheller RH. SNAREs—engines for membrane fusion. Nat Rev Mol Cell Biol. 2006;7(9):631–43.  https://doi.org/10.1038/nrm2002.CrossRefPubMedGoogle Scholar
  103. 103.
    Rao SK, Huynh C, Proux-Gillardeaux V, Galli T, Andrews NW. Identification of SNAREs involved in synaptotagmin VII-regulated lysosomal exocytosis. J Biol Chem. 2004;279(19):20471–9.  https://doi.org/10.1074/jbc.M400798200.CrossRefPubMedGoogle Scholar
  104. 104.
    Chaineau M, Danglot L, Galli T. Multiple roles of the vesicular-SNARE TI-VAMP in post-Golgi and endosomal trafficking. FEBS Lett. 2009;583(23):3817–26.  https://doi.org/10.1016/j.febslet.2009.10.026.CrossRefPubMedGoogle Scholar
  105. 105.
    Mathivanan S, Simpson RJ. ExoCarta: a compendium of exosomal proteins and RNA. Proteomics. 2009;9(21):4997–5000.  https://doi.org/10.1002/pmic.200900351.CrossRefPubMedGoogle Scholar
  106. 106.
    Kalra H, Simpson RJ, Ji H, Aikawa E, Altevogt P, Askenase P, Bond VC, Borras FE, Breakefield X, Budnik V, Buzas E, Camussi G, Clayton A, Cocucci E, Falcon-Perez JM, Gabrielsson S, Gho YS, Gupta D, Harsha HC, Hendrix A, Hill AF, Inal JM, Jenster G, Kramer-Albers EM, Lim SK, Llorente A, Lotvall J, Marcilla A, Mincheva-Nilsson L, Nazarenko I, Nieuwland R, Nolte-'t Hoen EN, Pandey A, Patel T, Piper MG, Pluchino S, Prasad TS, Rajendran L, Raposo G, Record M, Reid GE, Sanchez-Madrid F, Schiffelers RM, Siljander P, Stensballe A, Stoorvogel W, Taylor D, Thery C, Valadi H, van Balkom BW, Vazquez J, Vidal M, Wauben MH, Yanez-Mo M, Zoeller M, Mathivanan S. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol. 2012;10(12):1–5.  https://doi.org/10.1371/journal.pbio.1001450.CrossRefGoogle Scholar
  107. 107.
    Kim DK, Lee J, Kim SR, Choi DS, Yoon YJ, Kim JH, Go G, Nhung D, Hong K, Jang SC, Kim SH, Park KS, Kim OY, Park HT, Seo JH, Aikawa E, Baj-Krzyworzeka M, van Balkom BW, Belting M, Blanc L, Bond V, Bongiovanni A, Borras FE, Buee L, Buzas EI, Cheng L, Clayton A, Cocucci E, Dela Cruz CS, Desiderio DM, Di Vizio D, Ekstrom K, Falcon-Perez JM, Gardiner C, Giebel B, Greening DW, Gross JC, Gupta D, Hendrix A, Hill AF, Hill MM, Nolte-'t Hoen E, Hwang DW, Inal J, Jagannadham MV, Jayachandran M, Jee YK, Jorgensen M, Kim KP, Kim YK, Kislinger T, Lasser C, Lee DS, Lee H, van Leeuwen J, Lener T, Liu ML, Lotvall J, Marcilla A, Mathivanan S, Moller A, Morhayim J, Mullier F, Nazarenko I, Nieuwland R, Nunes DN, Pang K, Park J, Patel T, Pocsfalvi G, Del Portillo H, Putz U, Ramirez MI, Rodrigues ML, Roh TY, Royo F, Sahoo S, Schiffelers R, Sharma S, Siljander P, Simpson RJ, Soekmadji C, Stahl P, Stensballe A, Stepien E, Tahara H, Trummer A, Valadi H, Vella LJ, Wai SN, Witwer K, Yanez-Mo M, Youn H, Zeidler R, Gho YS. EVpedia: a community web portal for extracellular vesicles research. Bioinformatics. 2015;31(6):933–9.  https://doi.org/10.1093/bioinformatics/btu741.CrossRefPubMedGoogle Scholar
  108. 108.
    Li S, Li Y, Chen B, Zhao J, Yu S, Tang Y, Zheng Q, Li Y, Wang P, He X, Huang S. exoRBase: a database of circRNA, lncRNA and mRNA in human blood exosomes. Nucleic Acids Res. 2018;46(1):106–12.  https://doi.org/10.1093/nar/gkx891.CrossRefGoogle Scholar
  109. 109.
    Connolly KD, Guschina IA, Yeung V, Clayton A, Draman MS, Von Ruhland C, Ludgate M, James PE, Rees DA. Characterisation of adipocyte-derived extracellular vesicles released pre- and post-adipogenesis. J Extracell Vesicles. 2015;4(29159):1–10.  https://doi.org/10.3402/jev.v4.29159.CrossRefGoogle Scholar
  110. 110.
    Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S, Singh S, Williams C, Soplop N, Uryu K, Pharmer L, King T, Bojmar L, Davies AE, Ararso Y, Zhang T, Zhang H, Hernandez J, Weiss JM, Dumont-Cole VD, Kramer K, Wexler LH, Narendran A, Schwartz GK, Healey JH, Sandstrom P, Labori KJ, Kure EH, Grandgenett PM, Hollingsworth MA, de Sousa M, Kaur S, Jain M, Mallya K, Batra SK, Jarnagin WR, Brady MS, Fodstad O, Muller V, Pantel K, Minn AJ, Bissell MJ, Garcia BA, Kang Y, Rajasekhar VK, Ghajar CM, Matei I, Peinado H, Bromberg J, Lyden D. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527(7578):329–35.  https://doi.org/10.1038/nature15756.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Mulcahy LA, Pink RC, Carter DR. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles. 2014;3(24641):1–14.  https://doi.org/10.3402/jev.v3.24641.CrossRefGoogle Scholar
  112. 112.
    Sdrimas K, Kourembanas S. MSC microvesicles for the treatment of lung disease: a new paradigm for cell-free therapy. Antioxid Redox Signal. 2014;21(13):1905–15.  https://doi.org/10.1089/ars.2013.5784.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Webber J, Yeung V, Clayton A. Extracellular vesicles as modulators of the cancer microenvironment. Semin Cell Dev Biol. 2015;40:27–34.  https://doi.org/10.1016/j.semcdb.2015.01.013.CrossRefPubMedGoogle Scholar
  114. 114.
    Phinney DG, Pittenger MF. Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells. 2017;35(4):851–8.  https://doi.org/10.1002/stem.2575.CrossRefPubMedGoogle Scholar
  115. 115.
    Shephard AP, Yeung V, Clayton A, Webber JP. Prostate cancer exosomes as modulators of the tumor microenvironment. J Cancer Metastasis Treat. 2017;3(12):288–301.  https://doi.org/10.20517/2394-4722.2017.32.CrossRefGoogle Scholar
  116. 116.
    Willis GR, Kourembanas S, Mitsialis SA. Toward exosome-based therapeutics: isolation, heterogeneity, and fit-for-purpose potency. Front Cardiovasc Med. 2017;4(63):1–13.  https://doi.org/10.3389/fcvm.2017.00063.CrossRefGoogle Scholar
  117. 117.
    Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–9.  https://doi.org/10.1038/ncb1596.CrossRefPubMedGoogle Scholar
  118. 118.
    Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van Eijndhoven MA, Hopmans ES, Lindenberg JL, de Gruijl TD, Wurdinger T, Middeldorp JM. Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci U S A. 2010;107(14):6328–33.  https://doi.org/10.1073/pnas.0914843107.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem. 2010;285(23):17442–52.  https://doi.org/10.1074/jbc.M110.107821.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Xiao C, Wang K, Xu Y, Hu H, Zhang N, Wang Y, Zhong Z, Zhao J, Li Q, Zhu D, Ke C, Zhong S, Wu X, Yu H, Zhu W, Chen J, Zhang J, Wang J, Hu X. Transplanted mesenchymal stem cells reduce autophagic flux in infarcted hearts via the exosomal transfer of mir-125b. Circ Res. 2018;123(5):564–78.  https://doi.org/10.1161/CIRCRESAHA.118.312758.CrossRefPubMedGoogle Scholar
  121. 121.
    Au Yeung CL, Co NN, Tsuruga T, Yeung TL, Kwan SY, Leung CS, Li Y, Lu ES, Kwan K, Wong KK, Schmandt R, Lu KH, Mok SC. Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. Nat Commun. 2016;7(11150):1–14.  https://doi.org/10.1038/ncomms11150.CrossRefGoogle Scholar
  122. 122.
    Li L, Li C, Wang S, Wang Z, Jiang J, Wang W, Li X, Chen J, Liu K, Li C, Zhu G. Exosomes derived from hypoxic oral squamous cell carcinoma cells deliver miR-21 to normoxic cells to elicit a prometastatic phenotype. Cancer Res. 2016;76(7):1770–80.  https://doi.org/10.1158/0008-5472.CAN-15-1625.CrossRefPubMedGoogle Scholar
  123. 123.
    Willms E, Johansson HJ, Mager I, Lee Y, Blomberg KE, Sadik M, Alaarg A, Smith CI, Lehtio J, El Andaloussi S, Wood MJ, Vader P. Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci Rep. 2016;6(22519):1–12.  https://doi.org/10.1038/srep22519.CrossRefGoogle Scholar
  124. 124.
    Yeung V, Webber JP, Dunlop EA, Morgan H, Hutton J, Gurney M, Jones E, Falcon-Perez J, Tabi Z, Errington R, Clayton A. Rab35-dependent extracellular nanovesicles are required for induction of tumour supporting stroma. Nanoscale. 2018;10(18):8547–59.  https://doi.org/10.1039/c8nr02417k.CrossRefPubMedGoogle Scholar
  125. 125.
    Lee C, Mitsialis SA, Aslam M, Vitali SH, Vergadi E, Konstantinou G, Sdrimas K, Fernandez-Gonzalez A, Kourembanas S. Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation. 2012;126(22):2601–11.  https://doi.org/10.1161/CIRCULATIONAHA.112.114173.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Willis GR, Fernandez-Gonzalez A, Anastas J, Vitali SH, Liu X, Ericsson M, Kwong A, Mitsialis SA, Kourembanas S. Mesenchymal stromal cell exosomes ameliorate experimental bronchopulmonary dysplasia and restore lung function through macrophage immunomodulation. Am J Respir Crit Care Med. 2018;197(1):104–16.  https://doi.org/10.1164/rccm.201705-0925OC.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Kourembanas S. Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy. Annu Rev Physiol. 2015;77:13–27.  https://doi.org/10.1146/annurev-physiol-021014-071641.CrossRefPubMedGoogle Scholar
  128. 128.
    Willis GR, Mitsialis SA, Kourembanas S. “Good things come in small packages”: application of exosome-based therapeutics in neonatal lung injury. Pediatr Res. 2017;83(1–2):298–307.  https://doi.org/10.1038/pr.2017.256.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Willis GR, Fernandez-Gonzalez A, Reis M, Mitsialis SA, Kourembanas S. Macrophage immunomodulation: the gatekeeper for mesenchymal stem cell derived-exosomes in pulmonary arterial hypertension? Int J Mol Sci. 2018;19(2534):1–19.  https://doi.org/10.3390/ijms19092534.CrossRefGoogle Scholar
  130. 130.
    Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S, Collino F, Morando L, Busca A, Falda M, Bussolati B, Tetta C, Camussi G. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol. 2009;20(5):1053–67.  https://doi.org/10.1681/ASN.2008070798.CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Lai RC, Arslan F, Lee MM, Sze NSK, Choo A, Chen TS, Salto-Tellez M, Timmers L, Lee CN, El Oakley RM, Pasterkamp G, de Kleijn DPV, Lim SK. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 2010;4(3):214–22.  https://doi.org/10.1016/j.scr.2009.12.003.CrossRefPubMedGoogle Scholar
  132. 132.
    Cruz FF, Borg ZD, Goodwin M, Sokocevic D, Wagner DE, Coffey A, Antunes M, Robinson KL, Mitsialis SA, Kourembanas S, Thane K, Hoffman AM, McKenna DH, Rocco PR, Weiss DJ. Systemic administration of human bone marrow-derived mesenchymal stromal cell extracellular vesicles ameliorates aspergillus hyphal extract-induced allergic airway inflammation in immunocompetent mice. Stem Cells Transl Med. 2015;4(11):1302–16.  https://doi.org/10.5966/sctm.2014-0280.CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Chen JY, An R, Liu ZJ, Wang JJ, Chen SZ, Hong MM, Liu JH, Xiao MY, Chen YF. Therapeutic effects of mesenchymal stem cell-derived microvesicles on pulmonary arterial hypertension in rats. Acta Pharmacol Sin. 2014;35(9):1121–8.  https://doi.org/10.1038/aps.2014.61.CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Aliotta JM, Pereira M, Wen S, Dooner MS, Del Tatto M, Papa E, Goldberg LR, Baird GL, Ventetuolo CE, Quesenberry PJ, Klinger JR. Exosomes induce and reverse monocrotaline-induced pulmonary hypertension in mice. Cardiovasc Res. 2016;110(3):319–30.  https://doi.org/10.1093/cvr/cvw054.CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Chaubey S, Thueson S, Ponnalagu D, Alam MA, Gheorghe CP, Aghai Z, Singh H, Bhandari V. Early gestational mesenchymal stem cell secretome attenuates experimental bronchopulmonary dysplasia in part via exosome-associated factor TSG-6. Stem Cell Res Ther. 2018;9(173):1–26.  https://doi.org/10.1186/s13287-018-0903-4.CrossRefGoogle Scholar
  136. 136.
    Porzionato A, Zaramella P, Dedja A, Guidolin D, Van Wemmel K, Macchi V, Jurga M, Perilongo G, De Caro R, Baraldi E, Muraca M. Intratracheal administration of clinical-grade mesenchymal stem cell-derived extracellular vesicles reduces lung injury in a rat model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2019;316(1):L6–L19.  https://doi.org/10.1152/ajplung.00109.2018.CrossRefPubMedGoogle Scholar
  137. 137.
    Liu KD, Wilson JG, Zhuo H, Caballero L, McMillan ML, Fang X, Cosgrove K, Calfee CS, Lee JW, Kangelaris KN, Gotts JE, Rogers AJ, Levitt JE, Wiener-Kronish JP, Delucchi KL, Leavitt AD, McKenna DH, Thompson BT, Matthay MA. Design and implementation of the START (STem cells for ARDS treatment) trial, a phase 1/2 trial of human mesenchymal stem/stromal cells for the treatment of moderate-severe acute respiratory distress syndrome. Ann Intensive Care. 2014;4:22.  https://doi.org/10.1186/s13613-014-0022-z.CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Wilson JG, Liu KD, Zhuo H, Caballero L, McMillan M, Fang X, Cosgrove K, Vojnik R, Calfee CS, Lee JW, Rogers AJ, Levitt J, Wiener-Kronish J, Bajwa EK, Leavitt A, McKenna D, Thompson BT, Matthay MA. Mesenchymal stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial. Lancet Respir Med. 2015;3(1):24–32.  https://doi.org/10.1016/S2213-2600(14)70291-7.CrossRefPubMedGoogle Scholar
  139. 139.
    Matthay MA, Calfee CS, Zhuo H, Thompson BT, Wilson JG, Levitt JE, Rogers AJ, Gotts JE, Wiener-Kronish JP, Bajwa EK, Donahoe MP, McVerry BJ, Ortiz LA, Exline M, Christman JW, Abbott J, Delucchi KL, Caballero L, McMillan M, McKenna DH, Liu KD. Treatment with allogeneic mesenchymal stromal cells for moderate to severe acute respiratory distress syndrome (START study): a randomised phase 2a safety trial. Lancet Respir Med. 2019;7(2):154–62.  https://doi.org/10.1016/S2213-2600(18)30418-1.CrossRefPubMedGoogle Scholar
  140. 140.
    Armitage J, Tan DBA, Troedson R, Young P, Lam KV, Shaw K, Sturm M, Weiss DJ, Moodley YP. Mesenchymal stromal cell infusion modulates systemic immunological responses in stable COPD patients: a phase I pilot study. Eur Respir J. 2018;51(3):1702369.  https://doi.org/10.1183/13993003.02369-2017.CrossRefPubMedGoogle Scholar
  141. 141.
    Chang YS, Ahn SY, Yoo HS, Sung SI, Choi SJ, Oh WI, Park WS. Mesenchymal stem cells for bronchopulmonary dysplasia: phase 1 dose-escalation clinical trial. J Pediatr. 2014;164(5):966–72.  https://doi.org/10.1016/j.jpeds.2013.12.011.CrossRefPubMedGoogle Scholar
  142. 142.
    Schulz KF, Altman DG, Moher D. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. J Pharmacol Pharmacother. 2010;1(2):100–7.  https://doi.org/10.4103/0976-500x.72352.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Ahn SY, Chang YS, Kim JH, Sung SI, Park WS. Two-year follow-up outcomes of premature infants enrolled in the phase I trial of mesenchymal stem cells transplantation for bronchopulmonary dysplasia. J Pediatr. 2017;185:49–54.  https://doi.org/10.1016/j.jpeds.2017.02.061.CrossRefPubMedGoogle Scholar
  144. 144.
    Powell SB, Silvestri JM. Safety of intratracheal administration of human umbilical cord blood derived mesenchymal stromal cells in extremely low birth weight preterm infants. J Pediatr. 2019;210:209–13.  https://doi.org/10.1016/j.jpeds.2019.02.029.CrossRefPubMedGoogle Scholar
  145. 145.
    Loisel F, Provost B, Haddad F, Guihaire J, Amsallem M, Vrtovec B, Fadel E, Uzan G, Mercier O. Stem cell therapy targeting the right ventricle in pulmonary arterial hypertension: is it a potential avenue of therapy? Pulm Circ. 2018;8(2):1–17.  https://doi.org/10.1177/2045893218755979.CrossRefGoogle Scholar
  146. 146.
    Van Deun J, Mestdagh P, Sormunen R, Cocquyt V, Vermaelen K, Vandesompele J, Bracke M, De Wever O, Hendrix A. The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J Extracell Vesicles. 2014;3(24858):1–14.  https://doi.org/10.3402/jev.v3.24858.CrossRefGoogle Scholar
  147. 147.
    Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, Moita CF, Schauer K, Hume AN, Freitas RP, Goud B, Benaroch P, Hacohen N, Fukuda M, Desnos C, Seabra MC, Darchen F, Amigorena S, Moita LF, Thery C. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010;12(1):19–30.  https://doi.org/10.1038/ncb2000.CrossRefPubMedGoogle Scholar
  148. 148.
    Bobrie A, Krumeich S, Reyal F, Recchi C, Moita LF, Seabra MC, Ostrowski M, Thery C. Rab27a supports exosome-dependent and -independent mechanisms that modify the tumor microenvironment and can promote tumor progression. Cancer Res. 2012;72(19):4920–30.  https://doi.org/10.1158/0008-5472.CAN-12-0925.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vincent Yeung
    • 1
    • 2
  • Gareth R. Willis
    • 1
    • 2
  • Elizabeth Taglauer
    • 1
    • 2
  • S. Alex Mitsialis
    • 1
    • 2
  • Stella Kourembanas
    • 1
    • 2
    Email author
  1. 1.Department of PediatricsHarvard Medical SchoolBostonUSA
  2. 2.Division of Newborn Medicine, Department of MedicineBoston Children’s HospitalBostonUSA

Personalised recommendations