Advertisement

Stem/Progenitor Cell Populations Resident in the Lung and the Role of Stromal Support in Their Maintenance and Differentiation

  • Irene H. HeijinkEmail author
  • Nick H. T. ten Hacken
Chapter

Abstract

Lungs are vital organs for respiration, being enabled by their complex three-dimensional organization [1]. Airway tubes bifurcate into millions of highly vascularized alveolar sacs, the alveoli, which are responsible for gas exchange. The gas exchange surface of the lungs makes up one of the largest surface areas of the human body. The alveoli receive air from the conducting airways, starting in the trachea, bifurcating into the bronchi and bronchioles, and ending in the terminal bronchioles, which divide into the alveolar ducts from which the alveoli arise.

The aim of this chapter is to provide an overview of the progenitors in adult lung tissue and the regulation of their maintenance and differentiation by the microenvironment during lung developmental as well as repair processes, when developmental pathways are often reactivated. As most work has been done in mouse studies, the current knowledge from animal studies will be summarized and translated to what is known from human lungs. In order to understand the regenerative processes in the lung, we will first provide insight into the complex three-dimensional organization and composition of the lung, its function, and the processes involved in lung development.

References

  1. 1.
    Wansleeben C, Barkauskas CE, Rock JR, Hogan BL. Stem cells of the adult lung: their development and role in homeostasis, regeneration, and disease. Wiley Interdiscip Rev Dev Biol. 2013;2(1):131–48.CrossRefGoogle Scholar
  2. 2.
    Nikolic MZ, Sun D, Rawlins EL. Human lung development: recent progress and new challenges. Development. 2018;145(16).  https://doi.org/10.1242/dev.163485.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Klimczak A, Kozlowska U. Mesenchymal stromal cells and tissue-specific progenitor cells: their role in tissue homeostasis. Stem Cells Int. 2016;2016:4285215.PubMedCrossRefGoogle Scholar
  4. 4.
    Rawlins EL, Hogan BL. Epithelial stem cells of the lung: privileged few or opportunities for many? Development. 2006;133(13):2455–65.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Morrisey EE, Hogan BL. Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell. 2010;18(1):8–23.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Bertoncello I, McQualter JL. Lung stem cells: do they exist? Respirology. 2013;18(4):587–95.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Kotton DN. Next-generation regeneration: the hope and hype of lung stem cell research. Am J Respir Crit Care Med. 2012;185(12):1255–60.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Kajstura J, Rota M, Hall SR, Hosoda T, D'Amario D, Sanada F, et al. Evidence for human lung stem cells. N Engl J Med. 2011;364(19):1795–806.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Kruk DMLW, Heijink IH, Slebos DJ, Timens W, Ten Hacken NH. Mesenchymal stromal cells to regenerate emphysema: on the horizon? Respiration. 2018; 1–11.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Weibel ER. It takes more than cells to make a good lung. Am J Respir Crit Care Med. 2013;187(4):342–6.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Weinberger SE. Principles of pulmonary medicine. 4th ed. Philadelphia: Elsevier Saunders; 2004.Google Scholar
  12. 12.
    Wheather PR, Burkitt HG, Daniels VG. Functional histology. 1st ed. New York: Churchill Livingstone; 1979.Google Scholar
  13. 13.
    Lee JH, Rawlins EL. Developmental mechanisms and adult stem cells for therapeutic lung regeneration. Dev Biol. 2018;433(2):166–76.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Shi W, Chen F, Cardoso WV. Mechanisms of lung development: contribution to adult lung disease and relevance to chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2009;6(7):558–63.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    McCulley D, Wienhold M, Sun X. The pulmonary mesenchyme directs lung development. Curr Opin Genet Dev. 2015;32:98–105.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Rock JR, Randell SH, Hogan BL. Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling. Dis Model Mech. 2010;3(9–10):545–56.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Rock JR, Onaitis MW, Rawlins EL, Lu Y, Clark CP, Xue Y, et al. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci U S A. 2009;106(1091–6490; 0027–8424; 31):12771–5.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Rock JR, Hogan BL. Epithelial progenitor cells in lung development, maintenance, repair, and disease. Annu Rev Cell Dev Biol. 2011;27:493–512.CrossRefGoogle Scholar
  19. 19.
    Hong KU, Reynolds SD, Watkins S, Fuchs E, Stripp BR. Basal cells are a multipotent progenitor capable of renewing the bronchial epithelium. Am J Pathol. 2004;164(2):577–88.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Hegab AE, Ha VL, Gilbert JL, Zhang KX, Malkoski SP, Chon AT, et al. Novel stem/progenitor cell population from murine tracheal submucosal gland ducts with multipotent regenerative potential. Stem Cells. 2011;29(8):1283–93.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Lynch TJ, Anderson PJ, Rotti PG, Tyler SR, Crooke AK, Choi SH, et al. Submucosal gland Myoepithelial cells are reserve stem cells that can regenerate mouse tracheal epithelium. Cell Stem Cell. 2018;22(5):779.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Rawlins EL, Okubo T, Xue Y, Brass DM, Auten RL, Hasegawa H, et al. The role of Scgb1a1+ Clara cells in the long-term maintenance and repair of lung airway, but not alveolar, epithelium. Cell Stem Cell. 2009;4(6):525–34.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Giangreco A, Reynolds SD, Stripp BR. Terminal bronchioles harbor a unique airway stem cell population that localizes to the bronchoalveolar duct junction. Am J Pathol. 2002;161(1):173–82.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell. 2005;121(6):823–35.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Kim CF. Paving the road for lung stem cell biology: bronchioalveolar stem cells and other putative distal lung stem cells. Am J Physiol Lung Cell Mol Physiol. 2007;293(5):L1092–8.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Weiss DJ. Concise review: current status of stem cells and regenerative medicine in lung biology and diseases. Stem Cells. 2014;32(1):16–25.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Ghosh M, Helm KM, Smith RW, Giordanengo MS, Li B, Shen H, et al. A single cell functions as a tissue-specific stem cell and the in vitro niche-forming cell. Am J Respir Cell Mol Biol. 2011;45(3):459–69.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Reynolds SD, Giangreco A, Power JH, Stripp BR. Neuroepithelial bodies of pulmonary airways serve as a reservoir of progenitor cells capable of epithelial regeneration. Am J Pathol. 2000;156(1):269–78.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Song H, Yao E, Lin C, Gacayan R, Chen MH, Chuang PT. Functional characterization of pulmonary neuroendocrine cells in lung development, injury, and tumorigenesis. Proc Natl Acad Sci U S A. 2012;109(43):17531–6.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Barkauskas CE, Cronce MJ, Rackley CR, Bowie EJ, Keene DR, Stripp BR, et al. Type 2 alveolar cells are stem cells in adult lung. J Clin Invest. 2013;123(7):3025–36.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Hogan BL, Barkauskas CE, Chapman HA, Epstein JA, Jain R, Hsia CC, et al. Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell. 2014;15(2):123–38.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Jain R, Barkauskas CE, Takeda N, Bowie EJ, Aghajanian H, Wang Q, et al. Plasticity of Hopx(+) type I alveolar cells to regenerate type II cells in the lung. Nat Commun. 2015;6:6727.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Tropea KA, Leder E, Aslam M, Lau AN, Raiser DM, Lee JH, et al. Bronchioalveolar stem cells increase after mesenchymal stromal cell treatment in a mouse model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2012;302(9):L829–37.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Kumar PA, Hu Y, Yamamoto Y, Hoe NB, Wei TS, Mu D, et al. Distal airway stem cells yield alveoli in vitro and during lung regeneration following H1N1 influenza infection. Cell. 2011;147(3):525–38.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Chapman HA, Li X, Alexander JP, Brumwell A, Lorizio W, Tan K, et al. Integrin alpha6beta4 identifies an adult distal lung epithelial population with regenerative potential in mice. J Clin Invest. 2011;121(7):2855–62.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Zacharias WJ, Frank DB, Zepp JA, Morley MP, Alkhaleel FA, Kong J, et al. Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor. Nature. 2018;555(7695):251–5.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Nabhan AN, Brownfield DG, Harbury PB, Krasnow MA, Desai TJ. Single-cell Wnt signaling niches maintain stemness of alveolar type 2 cells. Science. 2018;359(6380):1118–23.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    McQualter JL, Anthony D, Bozinovski S, Prele CM, Laurent GJ. Harnessing the potential of lung stem cells for regenerative medicine. Int J Biochem Cell Biol. 2014;56:82–91.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Yuan T, Volckaert T, Chanda D, Thannickal VJ, De Langhe SP. Fgf10 signaling in lung development, homeostasis, disease, and repair after injury. Front Genet. 2018;9:418.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    El Agha E, Bellusci S. Walking along the fibroblast growth factor 10 route: a key pathway to understand the control and regulation of epithelial and mesenchymal cell-lineage formation during lung development and repair after injury. Scientifica (Cairo). 2014;2014:538379.Google Scholar
  41. 41.
    El Agha E, Herold S, Al Alam D, Quantius J, MacKenzie B, Carraro G, et al. Fgf10-positive cells represent a progenitor cell population during lung development and postnatally. Development. 2014;141(2):296–306.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Martin J, Helm K, Ruegg P, Varella-Garcia M, Burnham E, Majka S. Adult lung side population cells have mesenchymal stem cell potential. Cytotherapy. 2008;10(2):140–51.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Volckaert T, Dill E, Campbell A, Tiozzo C, Majka S, Bellusci S, et al. Parabronchial smooth muscle constitutes an airway epithelial stem cell niche in the mouse lung after injury. J Clin Invest. 2011;121(11):4409–19.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Volckaert T, Yuan T, Chao CM, Bell H, Sitaula A, Szimmtenings L, et al. Fgf10-hippo epithelial-mesenchymal crosstalk maintains and recruits lung basal stem cells. Dev Cell. 2017;43(1):48–59.e5.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Lee JH, Tammela T, Hofree M, Choi J, Marjanovic ND, Han S, et al. Anatomically and functionally distinct lung mesenchymal populations marked by Lgr5 and Lgr6. Cell. 2017;170(6):1149–1163.e12.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    McGowan SE, McCoy DM. Fibroblast growth factor signaling in myofibroblasts differs from lipofibroblasts during alveolar septation in mice. Am J Physiol Lung Cell Mol Physiol. 2015;309(5):L463–74.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Torday JS, Torres E, Rehan VK. The role of fibroblast transdifferentiation in lung epithelial cell proliferation, differentiation, and repair in vitro. Pediatr Pathol Mol Med. 2003;22(3):189–207.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Ruiz-Camp J, Morty RE. Divergent fibroblast growth factor signaling pathways in lung fibroblast subsets: where do we go from here? Am J Physiol Lung Cell Mol Physiol. 2015;309(8):L751–5.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Demayo F, Minoo P, Plopper CG, Schuger L, Shannon J, Torday JS. Mesenchymal-epithelial interactions in lung development and repair: are modeling and remodeling the same process? Am J Physiol Lung Cell Mol Physiol. 2002;283(3):L510–7.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Crosby LM, Waters CM. Epithelial repair mechanisms in the lung. Am J Physiol Lung Cell Mol Physiol. 2010;298(6):L715–31.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Leeman KT, Fillmore CM, Kim CF. Lung stem and progenitor cells in tissue homeostasis and disease. Curr Top Dev Biol. 2014;107:207–33.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Sinclair KA, Yerkovich ST, Chen T, McQualter JL, Hopkins PM, Wells CA, et al. Mesenchymal stromal cells are readily recoverable from lung tissue, but not the alveolar space, in healthy humans. Stem Cells. 2016;34(10):2548–58.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.CrossRefPubMedGoogle Scholar
  54. 54.
    Liu A, Chen S, Cai S, Dong L, Liu L, Yang Y, et al. Wnt5a through noncanonical Wnt/JNK or Wnt/PKC signaling contributes to the differentiation of mesenchymal stem cells into type II alveolar epithelial cells in vitro. PLoS One. 2014;9(3):e90229.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Gong X, Sun Z, Cui D, Xu X, Zhu H, Wang L, et al. Isolation and characterization of lung resident mesenchymal stem cells capable of differentiating into alveolar epithelial type II cells. Cell Biol Int. 2014;38(4):405–11.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Mendez JJ, Ghaedi M, Steinbacher D, Niklason LE. Epithelial cell differentiation of human mesenchymal stromal cells in decellularized lung scaffolds. Tissue Eng Part A. 2014;20(11–12):1735–46.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Hoffman AM, Paxson JA, Mazan MR, Davis AM, Tyagi S, Murthy S, et al. Lung-derived mesenchymal stromal cell post-transplantation survival, persistence, paracrine expression, and repair of elastase-injured lung. Stem Cells Dev. 2011;20(10):1779–92.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Lindahl P, Karlsson L, Hellstrom M, Gebre-Medhin S, Willetts K, Heath JK, et al. Alveogenesis failure in PDGF-A-deficient mice is coupled to lack of distal spreading of alveolar smooth muscle cell progenitors during lung development. Development. 1997;124(20):3943–53.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Ingenito EP, Tsai L, Murthy S, Tyagi S, Mazan M, Hoffman A. Autologous lung-derived mesenchymal stem cell transplantation in experimental emphysema. Cell Transplant. 2012;21(1):175–89.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Huh JW, Kim SY, Lee JH, Lee JS, Van Ta Q, Kim M, et al. Bone marrow cells repair cigarette smoke-induced emphysema in rats. Am J Physiol Lung Cell Mol Physiol. 2011;301(3):L255–66.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Zhen G, Liu H, Gu N, Zhang H, Xu Y, Zhang Z. Mesenchymal stem cells transplantation protects against rat pulmonary emphysema. Front Biosci. 2008;13:3415–22.CrossRefGoogle Scholar
  62. 62.
    Akram KM, Samad S, Spiteri MA, Forsyth NR. Mesenchymal stem cells promote alveolar epithelial cell wound repair in vitro through distinct migratory and paracrine mechanisms. Respir Res. 2013;14:9.  https://doi.org/10.1186/1465-9921-14-9.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Broekman W, Amatngalim GD, de Mooij-Eijk Y, Oostendorp J, Roelofs H, Taube C, et al. TNF-alpha and IL-1beta-activated human mesenchymal stromal cells increase airway epithelial wound healing in vitro via activation of the epidermal growth factor receptor. Respir Res. 2016;17:3.  https://doi.org/10.1186/s12931-015-0316-1.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Evans MJ, Van Winkle LS, Fanucchi MV, Plopper CG. Cellular and molecular characteristics of basal cells in airway epithelium. Exp Lung Res. 2001;27(5):401–15.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Teixeira VH, Nadarajan P, Graham TA, Pipinikas CP, Brown JM, Falzon M, et al. Stochastic homeostasis in human airway epithelium is achieved by neutral competition of basal cell progenitors. elife. 2013;2:e00966.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Watson JK, Rulands S, Wilkinson AC, Wuidart A, Ousset M, Van Keymeulen A, et al. Clonal dynamics reveal two distinct populations of basal cells in slow-turnover airway epithelium. Cell Rep. 2015;12(1):90–101.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Pardo-Saganta A, Law BM, Gonzalez-Celeiro M, Vinarsky V, Rajagopal J. Ciliated cells of pseudostratified airway epithelium do not become mucous cells after ovalbumin challenge. Am J Respir Cell Mol Biol. 2013;48(3):364–73.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Rawlins EL, Hogan BL. Ciliated epithelial cell lifespan in the mouse trachea and lung. Am J Physiol Lung Cell Mol Physiol. 2008;295(1):L231–4.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Rawlins EL, Ostrowski LE, Randell SH, Hogan BL. Lung development and repair: contribution of the ciliated lineage. Proc Natl Acad Sci U S A. 2007;104(2):410–7.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Bravo DT, Soudry E, Edward JA, Le W, Nguyen AL, Hwang PH, et al. Characterization of human upper airway epithelial progenitors. Int Forum Allergy Rhinol. 2013;3(10):841–7.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Hegab AE, Ha VL, Darmawan DO, Gilbert JL, Ooi AT, Attiga YS, et al. Isolation and in vitro characterization of basal and submucosal gland duct stem/progenitor cells from human proximal airways. Stem Cells Transl Med. 2012;1(10):719–24.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Mercer RR, Russell ML, Roggli VL, Crapo JD. Cell number and distribution in human and rat airways. Am J Respir Cell Mol Biol. 1994;10(6):613–24.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Hackett TL, Shaheen F, Johnson A, Wadsworth S, Pechkovsky DV, Jacoby DB, et al. Characterization of side population cells from human airway epithelium. Stem Cells. 2008;26(1549–4918; 1066–5099; 10):2576–85.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Post S, Heijink IH, Hesse L, Koo HK, Shaheen F, Fouadi M, et al. Characterization of a lung epithelium specific E-cadherin knock-out model: implications for obstructive lung pathology. Sci Rep. 2018;8(1):13275.  https://doi.org/10.1038/s41598-018-31500-8.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Gosney JR. Neuroendocrine cell populations in postnatal human lungs: minimal variation from childhood to old age. Anat Rec. 1993;236(1):177–80.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Cutz E, Gillan JE, Bryan AC. Neuroendocrine cells in the developing human lung: morphologic and functional considerations. Pediatr Pulmonol. 1985;1(3 Suppl):S21–9.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Li X, Rossen N, Sinn PL, Hornick AL, Steines BR, Karp PH, et al. Integrin alpha6beta4 identifies human distal lung epithelial progenitor cells with potential as a cell-based therapy for cystic fibrosis lung disease. PLoS One. 2013;8(12):e83624.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Lama VN, Smith L, Badri L, Flint A, Andrei AC, Murray S, et al. Evidence for tissue-resident mesenchymal stem cells in human adult lung from studies of transplanted allografts. J Clin Invest. 2007;117(4):989–96.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Rehan VK, Sugano S, Wang Y, Santos J, Romero S, Dasgupta C, et al. Evidence for the presence of lipofibroblasts in human lung. Exp Lung Res. 2006;32(8):379–93.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Griffiths MJ, Bonnet D, Janes SM. Stem cells of the alveolar epithelium. Lancet. 2005;366(9481):249–60.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    in't Anker PS, Noort WA, Scherjon SA, Kleijburg-van der Keur C, Kruisselbrink AB, van Bezooijen RL, et al. Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica. 2003;88(8):845–52.Google Scholar
  82. 82.
    Sabatini F, Petecchia L, Tavian M, Jodon de Villeroche V, Rossi GA, Brouty-Boye D. Human bronchial fibroblasts exhibit a mesenchymal stem cell phenotype and multilineage differentiating potentialities. Lab Investig. 2005 Aug;85(8):962–71.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Rolandsson Enes S, Andersson Sjoland A, Skog I, Hansson L, Larsson H, Le Blanc K, et al. MSC from fetal and adult lungs possess lung-specific properties compared to bone marrow-derived MSC. Sci Rep. 2016;6:29160.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Rolandsson S, Karlsson JC, Scheding S, Westergren-Thorsson G. Specific subsets of mesenchymal stroma cells to treat lung disorders--finding the holy grail. Pulm Pharmacol Ther. 2014;29(2):93–5.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Rolandsson S, Andersson Sjoland A, Brune JC, Li H, Kassem M, Mertens F, et al. Primary mesenchymal stem cells in human transplanted lungs are CD90/CD105 perivascularly located tissue-resident cells. BMJ Open Respir Res. 2014;1(1):e000027.  https://doi.org/10.1136/bmjresp-2014-000027.. eCollection 2014CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Kennelly H, Mahon BP, English K. Human mesenchymal stromal cells exert HGF dependent cytoprotective effects in a human relevant pre-clinical model of COPD. Sci Rep. 2016;6:38207.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Schweitzer KS, Johnstone BH, Garrison J, Rush NI, Cooper S, Traktuev DO, et al. Adipose stem cell treatment in mice attenuates lung and systemic injury induced by cigarette smoking. Am J Respir Crit Care Med. 2011;183(2):215–25.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Weiss DJ, Casaburi R, Flannery R, LeRoux-Williams M, Tashkin DP. A placebo-controlled, randomized trial of mesenchymal stem cells in COPD. Chest. 2013;143(6):1590–8.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Stolk J, Broekman W, Mauad T, Zwaginga JJ, Roelofs H, Fibbe WE, et al. A phase I study for intravenous autologous mesenchymal stromal cell administration to patients with severe emphysema. QJM. 2016;109(5):331–6.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Chambers DC, Enever D, Ilic N, Sparks L, Whitelaw K, Ayres J, et al. A phase 1b study of placenta-derived mesenchymal stromal cells in patients with idiopathic pulmonary fibrosis. Respirology. 2014;19(7):1013–8.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Mercado N, Ito K, Barnes PJ. Accelerated ageing of the lung in COPD: new concepts. Thorax. 2015;70(5):482–9.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Cheng H, Qiu L, Ma J, Zhang H, Cheng M, Li W, et al. Replicative senescence of human bone marrow and umbilical cord derived mesenchymal stem cells and their differentiation to adipocytes and osteoblasts. Mol Biol Rep. 2011;38(8):5161–8.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Ricciardi M, Malpeli G, Bifari F, Bassi G, Pacelli L, Nwabo Kamdje AH, et al. Comparison of epithelial differentiation and immune regulatory properties of mesenchymal stromal cells derived from human lung and bone marrow. PLoS One. 2012;7(5):e35639.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Kruk DMLW, de Bruin HG, Lodewijk M, Hof D, Daamen W, van Kuppevelt T, Rojas M, Timens W, ten Hacken NTH, Heijink IH. Differential gene expression of repair factors in mesenchymal stromal cells from different sources in emphysema. Eur Respir J. 2017;50:OA4438.  https://doi.org/10.1183/1393003.congress-2017.OA4438.CrossRefGoogle Scholar
  95. 95.
    Li X, Zhang Y, Yeung SC, Liang Y, Liang X, Ding Y, et al. Mitochondrial transfer of induced pluripotent stem cell-derived mesenchymal stem cells to airway epithelial cells attenuates cigarette smoke-induced damage. Am J Respir Cell Mol Biol. 2014;51(3):455–65.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Sinclair KA, Yerkovich ST, Hopkins PM, Chambers DC. Characterization of intercellular communication and mitochondrial donation by mesenchymal stromal cells derived from the human lung. Stem Cell Res Ther. 2016;7(1):91.  https://doi.org/10.1186/s13287-016-0354-8.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Irene H. Heijink
    • 1
    • 2
    • 3
    Email author
  • Nick H. T. ten Hacken
    • 2
    • 3
  1. 1.The University of GroningenUniversity Medical Center Groningen, Department of Pathology and Medical BiologyGroningenThe Netherlands
  2. 2.GRIAC Research InstituteUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
  3. 3.Department of PulmonologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands

Personalised recommendations