Clinical Application of Stem/Stromal Cells in Cystic Fibrosis

  • Steven T. Leung
  • Timothy S. Leach
  • Anthony AtalaEmail author
  • Sean V. Murphy


Cystic fibrosis (CF) is a detrimental hereditary disease with a pathophysiology characterized by thick, sticky mucus in the airways that promotes a proinflammatory and infection-prone environment. While treatment of the disease has drastically improved, affected individuals still have a lower quality of life and increased mortality due to the complexity of the irregulation of the lung environment. One of the major innovative approaches that is currently being investigated for the treatment of the CF pathological phenotype has been cell therapy. With an abundance of sources, a variety of stem cells have been considered as treatment options to improve CF lung function. Current in vitro and in vivo research continue to illustrate the beneficial effects of stem cells for CF via reduction of chronic inflammation and infection, lung epithelium correction, and promotion of mucociliary correction. As a result, stem cell therapy for CF has begun its integration into the first phases of clinical trials. Despite this progress, stem cell therapy faces significant hurdles in its translation to the clinic due to lack of understanding and control of the stem cells. The continuing understanding of the interaction between stem cells and the CF environment, cellular and molecular, is crucial to the future success of stem cell therapy for CF.


  1. 1.
    Riordan JR, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989;245(4922):1066–73.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Hanrahan JW, Wioland MA. Revisiting cystic fibrosis transmembrane conductance regulator structure and function. Proc Am Thorac Soc. 2004;1(1):17–21.PubMedCrossRefGoogle Scholar
  3. 3.
    Li C, Naren AP. CFTR chloride channel in the apical compartments: spatiotemporal coupling to its interacting partners. Integr Biol (Camb). 2010;2(4):161–77.CrossRefGoogle Scholar
  4. 4.
    Cantin AM, et al. Inflammation in cystic fibrosis lung disease: pathogenesis and therapy. J Cyst Fibros. 2015;14(4):419–30.PubMedCrossRefGoogle Scholar
  5. 5.
    Pezzulo AA, et al. Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung. Nature. 2012;487(7405):109–13.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Quinton PM. Role of epithelial HCO3(−) transport in mucin secretion: lessons from cystic fibrosis. Am J Physiol Cell Physiol. 2010;299(6):C1222–33.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Coakley RD, et al. Abnormal surface liquid pH regulation by cultured cystic fibrosis bronchial epithelium. Proc Natl Acad Sci U S A. 2003;100(26):16083–8.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Song Y, et al. Hyperacidity of secreted fluid from submucosal glands in early cystic fibrosis. Am J Physiol Cell Physiol. 2006;290(3):C741–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Painter RG, et al. CFTR-mediated halide transport in phagosomes of human neutrophils. J Leukoc Biol. 2010;87(5):933–42.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Zhou Y, et al. Cystic fibrosis transmembrane conductance regulator recruitment to phagosomes in neutrophils. J Innate Immun. 2013;5(3):219–30.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Pohl K, et al. A neutrophil intrinsic impairment affecting Rab27a and degranulation in cystic fibrosis is corrected by CFTR potentiator therapy. Blood. 2014;124(7):999–1009.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Bruce MC, et al. Biochemical and pathologic evidence for proteolytic destruction of lung connective tissue in cystic fibrosis. Am Rev Respir Dis. 1985;132(3):529–35.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Taggart C, et al. Increased elastase release by CF neutrophils is mediated by tumor necrosis factor-alpha and interleukin-8. Am J Physiol Lung Cell Mol Physiol. 2000;278(1):L33–41.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Mayer-Hamblett N, et al. Association between pulmonary function and sputum biomarkers in cystic fibrosis. Am J Respir Crit Care Med. 2007;175(8):822–8.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Doring G, et al. Elastase from polymorphonuclear leucocytes: a regulatory enzyme in immune complex disease. Clin Exp Immunol. 1986;64(3):597–605.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Berger M, et al. Complement receptor expression on neutrophils at an inflammatory site, the Pseudomonas-infected lung in cystic fibrosis. J Clin Invest. 1989;84(4):1302–13.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Lamothe J, Valvano MA. Burkholderia cenocepacia-induced delay of acidification and phagolysosomal fusion in cystic fibrosis transmembrane conductance regulator (CFTR)-defective macrophages. Microbiology. 2008;154(Pt 12):3825–34.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Zhang PX, et al. Reduced caveolin-1 promotes hyperinflammation due to abnormal heme oxygenase-1 localization in lipopolysaccharide-challenged macrophages with dysfunctional cystic fibrosis transmembrane conductance regulator. J Immunol. 2013;190(10):5196–206.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Hofer TP, et al. Decreased expression of HLA-DQ and HLA-DR on cells of the monocytic lineage in cystic fibrosis. J Mol Med (Berl). 2014;92(12):1293–304.CrossRefGoogle Scholar
  20. 20.
    Simonin-Le Jeune K, et al. Impaired functions of macrophage from cystic fibrosis patients: CD11b, TLR-5 decrease and sCD14, inflammatory cytokines increase. PLoS One. 2013;8(9):e75667.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Brennan S, et al. Alveolar macrophages and CC chemokines are increased in children with cystic fibrosis. Eur Respir J. 2009;34(3):655–61.PubMedCrossRefGoogle Scholar
  22. 22.
    Hartl D, et al. Innate immunity in cystic fibrosis lung disease. J Cyst Fibros. 2012;11(5):363–82.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Lubamba BA, et al. X-Box-Binding Protein 1 and innate immune responses of human cystic fibrosis alveolar macrophages. Am J Respir Crit Care Med. 2015;192(12):1449–61.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Kushwah R, Gagnon S, Sweezey NB. Intrinsic predisposition of naive cystic fibrosis T cells to differentiate towards a Th17 phenotype. Respir Res. 2013;14:138.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Mulcahy EM, et al. High peripheral blood th17 percent associated with poor lung function in cystic fibrosis. PLoS One. 2015;10(3):e0120912.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Hector A, et al. Regulatory T-cell impairment in cystic fibrosis patients with chronic pseudomonas infection. Am J Respir Crit Care Med. 2015;191(8):914–23.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Kerem E, et al. Pulmonary function and clinical course in patients with cystic fibrosis after pulmonary colonization with Pseudomonas aeruginosa. J Pediatr. 1990;116(5):714–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Pamukcu A, Bush A, Buchdahl R. Effects of Pseudomonas aeruginosa colonization on lung function and anthropometric variables in children with cystic fibrosis. Pediatr Pulmonol. 1995;19(1):10–5.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Kosorok MR, et al. Acceleration of lung disease in children with cystic fibrosis after Pseudomonas aeruginosa acquisition. Pediatr Pulmonol. 2001;32(4):277–87.PubMedCrossRefGoogle Scholar
  30. 30.
    Henry RL, Mellis CM, Petrovic L. Mucoid Pseudomonas aeruginosa is a marker of poor survival in cystic fibrosis. Pediatr Pulmonol. 1992;12(3):158–61.PubMedCrossRefGoogle Scholar
  31. 31.
    Zemel BS, et al. Longitudinal relationship among growth, nutritional status, and pulmonary function in children with cystic fibrosis: analysis of the Cystic Fibrosis Foundation National CF Patient Registry. J Pediatr. 2000;137(3):374–80.PubMedCrossRefGoogle Scholar
  32. 32.
    Greene CM, McElvaney NG. Proteases and antiproteases in chronic neutrophilic lung disease - relevance to drug discovery. Br J Pharmacol. 2009;158(4):1048–58.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Hartl D, et al. Cleavage of CXCR1 on neutrophils disables bacterial killing in cystic fibrosis lung disease. Nat Med. 2007;13(12):1423–30.PubMedCrossRefGoogle Scholar
  34. 34.
    George P, et al. Improved survival at low lung function in cystic fibrosis: cohort study from 1990 to 2007. BMJ. 2011;342:d1008.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Castellani C, Assael BM. Cystic fibrosis: a clinical view. Cell Mol Life Sci. 2017;74(1):129–40.PubMedCrossRefGoogle Scholar
  36. 36.
    Elborn JS. Cystic fibrosis. Lancet. 2016;388(10059):2519–31.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Conese M, Rejman J. Stem cells and cystic fibrosis. J Cyst Fibros. 2006;5(3):141–3.PubMedCrossRefGoogle Scholar
  38. 38.
    Rao M, Mason C, Solomon S. Cell therapy worldwide: an incipient revolution. Regen Med. 2015;10(2):181–91.PubMedCrossRefGoogle Scholar
  39. 39.
    Geiger S, Hirsch D, Hermann FG. Cell therapy for lung disease. Eur Respir Rev. 2017;26(144):170044.PubMedCrossRefGoogle Scholar
  40. 40.
    Antunes MA, Lapa ESJR, Rocco PR. Mesenchymal stromal cell therapy in COPD: from bench to bedside. Int J Chron Obstruct Pulmon Dis. 2017;12:3017–27.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Ghadiri M, Young PM, Traini D. Cell-based therapies for the treatment of idiopathic pulmonary fibrosis (IPF) disease. Expert Opin Biol Ther. 2016;16(3):375–87.PubMedCrossRefGoogle Scholar
  42. 42.
    Horie S, et al. Stem cell therapy for acute respiratory distress syndrome: a promising future? Curr Opin Crit Care. 2016;22(1):14–20.PubMedCrossRefGoogle Scholar
  43. 43.
    Lomas DA. Does protease–antiprotease imbalance explain chronic obstructive pulmonary disease? Ann Am Thorac Soc. 2016;13(Supplement 2):S130–7.PubMedGoogle Scholar
  44. 44.
    Balestro E, et al. Immune inflammation and disease progression in idiopathic pulmonary fibrosis. PLoS One. 2016;11(5):e0154516.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Bringardner BD, et al. The role of inflammation in the pathogenesis of idiopathic pulmonary fibrosis. Antioxid Redox Signal. 2008;10(2):287–301.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1334–49.PubMedCrossRefGoogle Scholar
  47. 47.
    Matthay MA, Zimmerman GA. Acute lung injury and the acute respiratory distress syndrome: four decades of inquiry into pathogenesis and rational management. Am J Respir Cell Mol Biol. 2005;33(4):319–27.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Matthay MA, et al. Future research directions in acute lung injury: summary of a National Heart, Lung, and Blood Institute working group. Am J Respir Crit Care Med. 2003;167(7):1027–35.PubMedCrossRefGoogle Scholar
  49. 49.
    Matthay MA, Ware LB, Zimmerman GA. The acute respiratory distress syndrome. J Clin Invest. 2012;122(8):2731–40.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Kokubun K, et al. Differentiation of porcine mesenchymal stem cells into epithelial cells as a potential therapeutic application to facilitate epithelial regeneration. J Tissue Eng Regen Med. 2016;10(2):E73–83.PubMedCrossRefGoogle Scholar
  51. 51.
    Li Y, et al. Therapeutic effects of amniotic fluid-derived mesenchymal stromal cells on lung injury in rats with emphysema. Respir Res. 2014;15:120.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Knight DA, Rossi FM, Hackett T-L. Mesenchymal stem cells for repair of the airway epithelium in asthma. Expert Rev Respir Med. 2010;4(6):747–58.PubMedCrossRefGoogle Scholar
  53. 53.
    Serrano-Mollar A. Cell therapy in idiopathic pulmonary fibrosis(dagger). Med Sci (Basel). 2018;6(3):64.Google Scholar
  54. 54.
    Mei SH, et al. Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. Am J Respir Crit Care Med. 2010;182(8):1047–57.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Prockop DJ, Oh JY. Mesenchymal stem/stromal cells (MSCs): role as guardians of inflammation. Mol Ther. 2012;20(1):14–20.PubMedCrossRefGoogle Scholar
  56. 56.
    Chilosi M, et al. Premature lung aging and cellular senescence in the pathogenesis of idiopathic pulmonary fibrosis and COPD/emphysema. Transl Res. 2013;162(3):156–73.PubMedCrossRefGoogle Scholar
  57. 57.
    Rock JR, Randell SH, Hogan BL. Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling. Dis Model Mech. 2010;3(9–10):545–56.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Voynow JA, et al. Basal-like cells constitute the proliferating cell population in cystic fibrosis airways. Am J Respir Crit Care Med. 2005;172(8):1013–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Sutton MT, et al. Mesenchymal stem cell soluble mediators and cystic fibrosis. J Stem Cell Res Ther. 2017;7(9):400.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Henderson WR Jr, et al. Inhibition of Wnt/beta-catenin/CREB binding protein (CBP) signaling reverses pulmonary fibrosis. Proc Natl Acad Sci U S A. 2010;107(32):14309–14.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Ito K, et al. Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N Engl J Med. 2005;352(19):1967–76.PubMedCrossRefGoogle Scholar
  62. 62.
    Paul MK, et al. Dynamic changes in intracellular ROS levels regulate airway basal stem cell homeostasis through Nrf2-dependent Notch signaling. Cell Stem Cell. 2014;15(2):199–214.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Tian Y, et al. Regulation of lung endoderm progenitor cell behavior by miR302/367. Development. 2011;138(7):1235–45.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Wobus AM, Boheler KR. Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol Rev. 2005;85(2):635–78.PubMedCrossRefGoogle Scholar
  65. 65.
    Piro D, Rejman J, Conese M. Stem cell therapy for cystic fibrosis: current status and future prospects. Expert Rev Respir Med. 2008;2(3):365–80.PubMedCrossRefGoogle Scholar
  66. 66.
    Ben-Yosef D, Malcov M, Eiges R. PGD-derived human embryonic stem cell lines as a powerful tool for the study of human genetic disorders. Mol Cell Endocrinol. 2008;282(1–2):153–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Wong AP, et al. Directed differentiation of human pluripotent stem cells into mature airway epithelia expressing functional CFTR protein. Nat Biotechnol. 2012;30(9):876–82.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Conese M, et al. The long and winding road: stem cells for cystic fibrosis. Expert Opin Biol Ther. 2018;18(3):281–92.PubMedCrossRefGoogle Scholar
  69. 69.
    Dye BR, et al. In vitro generation of human pluripotent stem cell derived lung organoids. Elife. 2015;4:e05098Google Scholar
  70. 70.
    McCauley KB, et al. Efficient derivation of functional human airway epithelium from pluripotent stem cells via temporal regulation of Wnt signaling. Cell Stem Cell. 2017;20(6):844–57. e6PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Mou H, et al. Generation of multipotent lung and airway progenitors from mouse ESCs and patient-specific cystic fibrosis iPSCs. Cell Stem Cell. 2012;10(4):385–97.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Burg KJL, Inskeep B, Burg TC. Chapter 36—breast tissue engineering: reconstruction implants and three-dimensional tissue test systems. In: Lanza R, Langer R, Vacanti J, editors. Principles of tissue engineering. 4th ed. Boston: Academic Press; 2014. p. 727–49.CrossRefGoogle Scholar
  73. 73.
    Wagner DE, et al. Can stem cells be used to generate new lungs? Ex vivo lung bioengineering with decellularized whole lung scaffolds. Respirology. 2013;18(6):895–911.PubMedCrossRefGoogle Scholar
  74. 74.
    Collins JJ, Thebaud B. Lung mesenchymal stromal cells in development and disease: to serve and protect? Antioxid Redox Signal. 2014;21(13):1849–62.PubMedCrossRefGoogle Scholar
  75. 75.
    Ullah I, Subbarao RB, Rho GJ. Human mesenchymal stem cells-current trends and future prospective. Biosci Rep. 2015;35(2):e00191.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Macrin D, et al. Eminent sources of adult mesenchymal stem cells and their therapeutic imminence. Stem Cell Rev Rep. 2017;13(6):741–56.PubMedCrossRefGoogle Scholar
  77. 77.
    Dominici M, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.CrossRefPubMedGoogle Scholar
  78. 78.
    Herzog EL, Chai L, Krause DS. Plasticity of marrow-derived stem cells. Blood. 2003;102(10):3483–93.PubMedCrossRefGoogle Scholar
  79. 79.
    Cao W, et al. Mesenchymal stem cells and adaptive immune responses. Immunol Lett. 2015;168(2):147–53.PubMedCrossRefGoogle Scholar
  80. 80.
    Khoury O, et al. Immunomodulatory cell therapy to target cystic fibrosis inflammation. Am J Respir Cell Mol Biol. 2018;58(1):12–20.PubMedCrossRefGoogle Scholar
  81. 81.
    Keating A. Mesenchymal stromal cells: new directions. Cell Stem Cell. 2012;10(6):709–16.PubMedCrossRefGoogle Scholar
  82. 82.
    Piskorska-Jasiulewicz MM, Witkowska-Zimny M. Perinatal sources of stem cells. Postepy Hig Med Dosw (Online). 2015;69:327–34.CrossRefGoogle Scholar
  83. 83.
    Murphy S, et al. Amnion epithelial cell isolation and characterization for clinical use. Curr Protoc Stem Cell Biol. 2010. Chapter 1: p. Unit 1E 6.Google Scholar
  84. 84.
    Tsai MS, et al. Clonal amniotic fluid-derived stem cells express characteristics of both mesenchymal and neural stem cells. Biol Reprod. 2006;74(3):545–51.PubMedCrossRefGoogle Scholar
  85. 85.
    Ditadi A, et al. Human and murine amniotic fluid c-kit+Lin- cells display hematopoietic activity. Blood. 2009;113(17):3953–60.PubMedCrossRefGoogle Scholar
  86. 86.
    McDonald CA, et al. Immunosuppressive potential of human amnion epithelial cells in the treatment of experimental autoimmune encephalomyelitis. J Neuroinflammation. 2015;12:112.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Miki T, et al. Identification of stem cell marker-positive cells by immunofluorescence in term human amnion. J Reprod Immunol. 2007;75(2):91–6.PubMedCrossRefGoogle Scholar
  88. 88.
    Ilancheran S, et al. Stem cells derived from human fetal membranes display multilineage differentiation potential. Biol Reprod. 2007;77(3):577–88.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Toda A, et al. The potential of amniotic membrane/amnion-derived cells for regeneration of various tissues. J Pharmacol Sci. 2007;105(3):215–28.PubMedCrossRefGoogle Scholar
  90. 90.
    Diaz-Prado S, et al. Multilineage differentiation potential of cells isolated from the human amniotic membrane. J Cell Biochem. 2010;111(4):846–57.PubMedCrossRefGoogle Scholar
  91. 91.
    Akle CA, et al. Immunogenicity of human amniotic epithelial cells after transplantation into volunteers. Lancet. 1981;2(8254):1003–5.PubMedCrossRefGoogle Scholar
  92. 92.
    Miki T, et al. Stem cell characteristics of amniotic epithelial cells. Stem Cells. 2005;23(10):1549–59.PubMedCrossRefGoogle Scholar
  93. 93.
    Diaz-Prado S, et al. Isolation and characterization of mesenchymal stem cells from human amniotic membrane. Tissue Eng Part C Methods. 2011;17(1):49–59.PubMedCrossRefGoogle Scholar
  94. 94.
    Tamagawa T, et al. Differentiation of mesenchymal cells derived from human amniotic membranes into hepatocyte-like cells in vitro. Hum Cell. 2007;20(3):77–84.PubMedCrossRefGoogle Scholar
  95. 95.
    Adinolfi M, et al. Expression of HLA antigens, beta 2-microglobulin and enzymes by human amniotic epithelial cells. Nature. 1982;295(5847):325–7.PubMedCrossRefGoogle Scholar
  96. 96.
    In 't Anker PS, et al. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells. 2004;22(7):1338–45.PubMedCrossRefGoogle Scholar
  97. 97.
    Wu Q, et al. Comparison of the proliferation, migration and angiogenic properties of human amniotic epithelial and mesenchymal stem cells and their effects on endothelial cells. Int J Mol Med. 2017;39(4):918–26.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Kurtzberg J, et al. Placental blood as a source of hematopoietic stem cells for transplantation into unrelated recipients. N Engl J Med. 1996;335(3):157–66.PubMedCrossRefGoogle Scholar
  99. 99.
    Hordyjewska A, Popiolek L, Horecka A. Characteristics of hematopoietic stem cells of umbilical cord blood. Cytotechnology. 2015;67(3):387–96.PubMedCrossRefGoogle Scholar
  100. 100.
    Lee MW, et al. Isolation of mesenchymal stem cells from cryopreserved human umbilical cord blood. Int J Hematol. 2005;81(2):126–30.PubMedCrossRefGoogle Scholar
  101. 101.
    Weiss ML, Troyer DL. Stem cells in the umbilical cord. Stem Cell Rev. 2006;2(2):155–62.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    De Coppi P, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol. 2007;25(1):100–6.PubMedCrossRefGoogle Scholar
  103. 103.
    Cananzi M, Atala A, De Coppi P. Stem cells derived from amniotic fluid: new potentials in regenerative medicine. Reprod Biomed Online. 2009;18(Suppl 1):17–27.PubMedCrossRefGoogle Scholar
  104. 104.
    Abbaspanah B, et al. Advances in perinatal stem cells research: a precious cell source for clinical applications. Regen Med. 2018;13(05):595–610.PubMedCrossRefGoogle Scholar
  105. 105.
    Miki T, Strom SC. Amnion-derived pluripotent/multipotent stem cells. Stem Cell Rev. 2006;2(2):133–41.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Pianta S, et al. Amniotic mesenchymal cells from pre-eclamptic placentae maintain immunomodulatory features as healthy controls. J Cell Mol Med. 2016;20(1):157–69.PubMedCrossRefGoogle Scholar
  107. 107.
    Fierabracci A, et al. How far are we from the clinical use of placental-derived mesenchymal stem cells? Expert Opin Biol Ther. 2015;15(5):613–7.PubMedCrossRefGoogle Scholar
  108. 108.
    Murphy SV, et al. Human amnion epithelial cells do not abrogate pulmonary fibrosis in mice with impaired macrophage function. Cell Transplant. 2012;21(7):1477–92.PubMedCrossRefGoogle Scholar
  109. 109.
    Di Trapani M, et al. Comparative study of immune regulatory properties of stem cells derived from different tissues. Stem Cells Dev. 2013;22(22):2990–3002.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Moorefield EC, et al. Cloned, CD117 selected human amniotic fluid stem cells are capable of modulating the immune response. PLoS One. 2011;6(10):e26535.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Dodge JA, et al. Cystic fibrosis mortality and survival in the UK: 1947-2003. Eur Respir J. 2007;29(3):522–6.PubMedCrossRefGoogle Scholar
  112. 112.
    Smyth AR, et al. European cystic fibrosis society standards of care: best practice guidelines. J Cyst Fibros. 2014;13(Suppl 1):S23–42.PubMedCrossRefGoogle Scholar
  113. 113.
    Auerbach HS, et al. Alternate-day prednisone reduces morbidity and improves pulmonary function in cystic fibrosis. Lancet. 1985;2(8457):686–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Eigen H, et al. A multicenter study of alternate-day prednisone therapy in patients with cystic fibrosis. Cystic Fibrosis Foundation prednisone trial group. J Pediatr. 1995;126(4):515–23.PubMedCrossRefGoogle Scholar
  115. 115.
    Mogayzel PJ Jr, et al. Cystic fibrosis pulmonary guidelines. Chronic medications for maintenance of lung health. Am J Respir Crit Care Med. 2013;187(7):680–9.PubMedCrossRefGoogle Scholar
  116. 116.
    Konstan MW, et al. Effect of high-dose ibuprofen in patients with cystic fibrosis. N Engl J Med. 1995;332(13):848–54.PubMedCrossRefGoogle Scholar
  117. 117.
    Lands LC, Dauletbaev N. High-dose ibuprofen in cystic fibrosis. Pharmaceuticals (Basel). 2010;3(7):2213–24.CrossRefGoogle Scholar
  118. 118.
    Fennell PB, et al. Use of high-dose ibuprofen in a pediatric cystic fibrosis center. J Cyst Fibros. 2007;6(2):153–8.PubMedCrossRefGoogle Scholar
  119. 119.
    Ramsey BW, et al. Efficacy of aerosolized tobramycin in patients with cystic fibrosis. N Engl J Med. 1993;328(24):1740–6.PubMedCrossRefGoogle Scholar
  120. 120.
    Saiman L, et al. Effect of azithromycin on pulmonary function in patients with cystic fibrosis uninfected with Pseudomonas aeruginosa: a randomized controlled trial. JAMA. 2010;303(17):1707–15.PubMedCrossRefGoogle Scholar
  121. 121.
    Lopez-Causape C, et al. The problems of antibiotic resistance in cystic fibrosis and solutions. Expert Rev Respir Med. 2015;9(1):73–88.PubMedCrossRefGoogle Scholar
  122. 122.
    Stefani S, et al. Relevance of multidrug-resistant Pseudomonas aeruginosa infections in cystic fibrosis. Int J Med Microbiol. 2017;307(6):353–62.PubMedCrossRefGoogle Scholar
  123. 123.
    Bilton D, et al. Inhaled dry powder mannitol in cystic fibrosis: an efficacy and safety study. Eur Respir J. 2011;38(5):1071–80.PubMedCrossRefGoogle Scholar
  124. 124.
    Sutton MT, et al. Antimicrobial properties of Mesenchymal stem cells: therapeutic potential for cystic fibrosis infection, and treatment. Stem Cells Int. 2016;2016:5303048.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Vandamme D, et al. A comprehensive summary of LL-37, the factotum human cathelicidin peptide. Cell Immunol. 2012;280(1):22–35.PubMedCrossRefGoogle Scholar
  126. 126.
    Oren Z, et al. Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity. Biochem J. 1999;341(Pt 3):501–13.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Bucki R, Janmey PA. Interaction of the gelsolin-derived antibacterial PBP 10 peptide with lipid bilayers and cell membranes. Antimicrob Agents Chemother. 2006;50(9):2932–40.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Turner J, et al. Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob Agents Chemother. 1998;42(9):2206–14.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Lee CC, et al. Transmembrane pores formed by human antimicrobial peptide LL-37. Biophys J. 2011;100(7):1688–96.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Kahlenberg JM, Kaplan MJ. Little peptide, big effects: the role of LL-37 in inflammation and autoimmune disease. J Immunol. 2013;191(10):4895–901.PubMedCrossRefGoogle Scholar
  131. 131.
    Wood CR, et al. Human adipose tissue-derived mesenchymal stem/stromal cells adhere to and inhibit the growth of Staphylococcus aureus and Pseudomonas aeruginosa. J Med Microbiol. 2018;67(12):1789–95.PubMedCrossRefGoogle Scholar
  132. 132.
    Gupta N, et al. Mesenchymal stem cells enhance survival and bacterial clearance in murine Escherichia coli pneumonia. Thorax. 2012;67(6):533–9.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Bakhshandeh Z, et al. Recombinant human lipocalin 2 acts as an antibacterial agent to prevent platelet contamination. Hematology. 2014;19(8):487–92.PubMedCrossRefGoogle Scholar
  134. 134.
    Huang LC, et al. In vitro activity of human beta-defensin 2 against Pseudomonas aeruginosa in the presence of tear fluid. Antimicrob Agents Chemother. 2007;51(11):3853–60.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Schroder JM, Harder J. Human beta-defensin-2. Int J Biochem Cell Biol. 1999;31(6):645–51.PubMedCrossRefGoogle Scholar
  136. 136.
    Sung DK, et al. Antibacterial effect of mesenchymal stem cells against Escherichia coli is mediated by secretion of beta-defensin-2 via toll-like receptor 4 signalling. Cell Microbiol. 2016;18(3):424–36.CrossRefGoogle Scholar
  137. 137.
    Nemeth K, Mayer B, Mezey E. Modulation of bone marrow stromal cell functions in infectious diseases by toll-like receptor ligands. J Mol Med. 2010;88(1):5–10.PubMedCrossRefGoogle Scholar
  138. 138.
    Lim KH, Staudt LM. Toll-like receptor signaling. Cold Spring Harb Perspect Biol. 2013;5(1):a011247.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    King A, et al. Expression of natural antimicrobials by human placenta and fetal membranes. Placenta. 2007;28(2–3):161–9.PubMedCrossRefGoogle Scholar
  140. 140.
    Kjaergaard N, et al. Antibacterial properties of human amnion and chorion in vitro. Eur J Obstet Gynecol Reprod Biol. 2001;94(2):224–9.PubMedCrossRefGoogle Scholar
  141. 141.
    Stock SJ, et al. Natural antimicrobial production by the amnion. Am J Obstet Gynecol. 2007;196(3):255.PubMedCrossRefGoogle Scholar
  142. 142.
    Tehrani FA, et al. Induction of antimicrobial peptides secretion by IL-1β enhances human amniotic membrane for regenerative medicine. Sci Rep. 2017;7(1):17022.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Nichols DP, Chmiel JF. Inflammation and its genesis in cystic fibrosis. Pediatr Pulmonol. 2015;50(Suppl 40):S39–56.CrossRefGoogle Scholar
  144. 144.
    Hayes M, et al. Therapeutic efficacy of human mesenchymal stromal cells in the repair of established ventilator-induced lung injury in the rat. Anesthesiology. 2015;122(2):363–73.CrossRefGoogle Scholar
  145. 145.
    Devaney J, et al. Human mesenchymal stromal cells decrease the severity of acute lung injury induced by E. coli in the rat. Thorax. 2015;70(7):625–35.CrossRefGoogle Scholar
  146. 146.
    Gu W, et al. Mesenchymal stem cells alleviate airway inflammation and emphysema in COPD through down-regulation of cyclooxygenase-2 via p38 and ERK MAPK pathways. Sci Rep. 2015;5:8733.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Moodley Y, et al. Human umbilical cord mesenchymal stem cells reduce fibrosis of bleomycin-induced lung injury. Am J Pathol. 2009;175(1):303–13.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Cargnoni A, et al. Transplantation of allogeneic and xenogeneic placenta-derived cells reduces bleomycin-induced lung fibrosis. Cell Transplant. 2009;18(4):405–22.CrossRefGoogle Scholar
  149. 149.
    Moodley Y, et al. Human amnion epithelial cell transplantation abrogates lung fibrosis and augments repair. Am J Respir Crit Care Med. 2010;182(5):643–51.PubMedCrossRefGoogle Scholar
  150. 150.
    Hodges RJ, et al. Amnion epithelial cells as a candidate therapy for acute and chronic lung injury. Stem Cells Int. 2012;2012:709763.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Vlad G, Cortesini R, Suciu-Foca N. License to heal: bidirectional interaction of antigen-specific regulatory T cells and tolerogenic APC. J Immunol. 2005;174(10):5907–14.PubMedCrossRefGoogle Scholar
  152. 152.
    Pianta S, et al. Amniotic membrane mesenchymal cells-derived factors skew T cell polarization toward Treg and downregulate Th1 and Th17 cells subsets. Stem Cell Rev. 2015;11(3):394–407.CrossRefGoogle Scholar
  153. 153.
    Vegran F, et al. Th9 cells: a new population of helper T cells. Med Sci (Paris). 2016;32(4):387–93.CrossRefGoogle Scholar
  154. 154.
    Ramalho AS, et al. Five percent of normal cystic fibrosis transmembrane conductance regulator mRNA ameliorates the severity of pulmonary disease in cystic fibrosis. Am J Respir Cell Mol Biol. 2002;27(5):619–27.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Griesenbach U, Alton EW. Expert opinion in biological therapy: update on developments in lung gene transfer. Expert Opin Biol Ther. 2013;13(3):345–60.PubMedCrossRefGoogle Scholar
  156. 156.
    Firth AL, et al. Generation of multiciliated cells in functional airway epithelia from human induced pluripotent stem cells. Proc Natl Acad Sci U S A. 2014;111(17):E1723–30.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Rippon HJ, et al. Embryonic stem cells as a source of pulmonary epithelium in vitro and in vivo. Proc Am Thorac Soc. 2008;5(6):717–22.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Wang D, et al. Transplantation of human embryonic stem cell–derived alveolar epithelial type II cells abrogates acute lung injury in mice. Mol Ther. 2010;18(3):625–34.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Rosen C, et al. Preconditioning allows engraftment of mouse and human embryonic lung cells, enabling lung repair in mice. Nat Med. 2015;21(8):869–79.PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Firth AL, et al. Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient iPSCs. Cell Rep. 2015;12(9):1385–90.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Suzuki S, et al. TALENs facilitate single-step seamless SDF correction of F508del CFTR in airway epithelial submucosal gland cell-derived CF-iPSCs. Mol Ther Nucleic Acids. 2016;5:e273.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Ramalingam S, et al. Generation and genetic engineering of human induced pluripotent stem cells using designed zinc finger nucleases. Stem Cells Dev. 2013;22(4):595–610.PubMedCrossRefGoogle Scholar
  163. 163.
    Wang G, et al. Adult stem cells from bone marrow stroma differentiate into airway epithelial cells: potential therapy for cystic fibrosis. Proc Natl Acad Sci. 2005;102(1):186–91.PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Duchesneau P, et al. Partial restoration of CFTR function in cftr-null mice following targeted cell replacement therapy. Mol Ther. 2017;25(3):654–65.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Carbone A, et al. Correction of defective CFTR/EN aC function and tightness of cystic fibrosis airway epithelium by amniotic mesenchymal stromal (stem) cells. J Cell Mol Med. 2014;18(8):1631–43.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Carbone A, et al. Gap junctions are involved in the rescue of CFTR-dependent chloride efflux by amniotic Mesenchymal stem cells in Coculture with cystic fibrosis CFBE41o-cells. Stem Cells Int. 2018;2018:1203717.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Murphy SV, et al. Human amnion epithelial cells induced to express functional cystic fibrosis transmembrane conductance regulator. PLoS One. 2012;7(9):e46533.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Dai R, et al. Delivery of adipose-derived mesenchymal stem cells attenuates airway responsiveness and inflammation in a mouse model of ovalbumin-induced asthma. Am J Transl Res. 2017;9(5):2421–8.PubMedPubMedCentralGoogle Scholar
  169. 169.
    Li Y, et al. Placentaderived mesenchymal stem cells improve airway hyperresponsiveness and inflammation in asthmatic rats by modulating the Th17/Treg balance. Mol Med Rep. 2017;16(6):8137–45.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Urbanek K, et al. Intratracheal administration of mesenchymal stem cells modulates tachykinin system, suppresses airway remodeling and reduces airway hyperresponsiveness in an animal model. PLoS One. 2016;11(7):e0158746.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Li Y, et al. Human placenta mesenchymal stem cells suppress airway inflammation in asthmatic rats by modulating notch signaling. Mol Med Rep. 2018;17(4):5336–43.PubMedPubMedCentralGoogle Scholar
  172. 172.
    Duan HG, et al. Human umbilical cord mesenchymal stem cells alleviate nasal mucosa radiation damage in a guinea pig model. J Cell Biochem. 2015;116(2):331–8.PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Weiss DJ, et al. A placebo-controlled, randomized trial of mesenchymal stem cells in COPD. Chest. 2013;143(6):1590–8.PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Chambers DC, et al. A phase 1b study of placenta-derived mesenchymal stromal cells in patients with idiopathic pulmonary fibrosis. Respirology. 2014;19(7):1013–8.PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Chang YS, et al. Mesenchymal stem cells for bronchopulmonary dysplasia: phase 1 dose-escalation clinical trial. J Pediatr. 2014;164(5):966–72. e6PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Stolk J, et al. A phase I study for intravenous autologous mesenchymal stromal cell administration to patients with severe emphysema. QJM. 2016;109(5):331–6.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Wilson JG, et al. Mesenchymal stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial. Lancet Respir Med. 2015;3(1):24–32.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Kent G, et al. Lung disease in mice with cystic fibrosis. J Clin Invest. 1997;100(12):3060–9.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Rogers CS, et al. Production of CFTR-null and CFTR-DeltaF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer. J Clin Invest. 2008;118(4):1571–7.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Sun X, et al. Adeno-associated virus-targeted disruption of the CFTR gene in cloned ferrets. J Clin Invest. 2008;118(4):1578–83.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Meisel R, et al. Human but not murine multipotent mesenchymal stromal cells exhibit broad-spectrum antimicrobial effector function mediated by indoleamine 2,3-dioxygenase. Leukemia. 2011;25:648.PubMedCrossRefGoogle Scholar
  182. 182.
    Mondrinos MJ, et al. Engineering three-dimensional pulmonary tissue constructs. Tissue Eng. 2006;12(4):717–28.PubMedCrossRefGoogle Scholar
  183. 183.
    Mondrinos MJ, et al. A tissue-engineered model of fetal distal lung tissue. Am J Physiol Lung Cell Mol Physiol. 2007;293(3):L639–50.PubMedCrossRefGoogle Scholar
  184. 184.
    Daly AB, et al. Initial binding and recellularization of decellularized mouse lung scaffolds with bone marrow-derived mesenchymal stromal cells. Tissue Eng Part A. 2012;18(1–2):1–16.CrossRefGoogle Scholar
  185. 185.
    Cortiella J, et al. Tissue-engineered lung: an in vivo and in vitro comparison of polyglycolic acid and pluronic F-127 hydrogel/somatic lung progenitor cell constructs to support tissue growth. Tissue Eng. 2006;12(5):1213–25.PubMedCrossRefGoogle Scholar
  186. 186.
    Hopkins Tanne J. All approved US embryonic stem cell lines may be contaminated. BMJ. 2005;330(7485):214.PubMedCentralPubMedGoogle Scholar
  187. 187.
    Garcia S, et al. Pitfalls in spontaneous in vitro transformation of human mesenchymal stem cells. Exp Cell Res. 2010;316(9):1648–50.PubMedCrossRefGoogle Scholar
  188. 188.
    Torsvik A, et al. Spontaneous malignant transformation of human mesenchymal stem cells reflects cross-contamination: putting the research field on track - letter. Cancer Res. 2010;70(15):6393–6.PubMedCrossRefGoogle Scholar
  189. 189.
    Vogel G. Cell biology. To scientists’ dismay, mixed-up cell lines strike again. Science. 2010;329(5995):1004.PubMedCrossRefGoogle Scholar
  190. 190.
    Duijvestein M, et al. Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn's disease: results of a phase I study. Gut. 2010;59(12):1662–9.PubMedCrossRefGoogle Scholar
  191. 191.
    Ribeiro A, et al. Mesenchymal stem cells from umbilical cord matrix, adipose tissue and bone marrow exhibit different capability to suppress peripheral blood B, natural killer and T cells. Stem Cell Res Ther. 2013;4(5):125.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Wolbank S, et al. Dose-dependent immunomodulatory effect of human stem cells from amniotic membrane: a comparison with human mesenchymal stem cells from adipose tissue. Tissue Eng. 2007;13(6):1173–83.PubMedCrossRefGoogle Scholar
  193. 193.
    Wagner W, et al. Aging and replicative senescence have related effects on human stem and progenitor cells. PLoS One. 2009;4(6):e5846.PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Bustos ML, et al. Aging mesenchymal stem cells fail to protect because of impaired migration and antiinflammatory response. Am J Respir Crit Care Med. 2014;189(7):787–98.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Yan X, et al. Injured microenvironment directly guides the differentiation of engrafted Flk-1(+) mesenchymal stem cell in lung. Exp Hematol. 2007;35(9):1466–75.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Kurtz A. Mesenchymal stem cell delivery routes and fate. Int J Stem Cells. 2008;1(1):1.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Schilders KA, et al. Regeneration of the lung: lung stem cells and the development of lung mimicking devices. Respir Res. 2016;17:44.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Weiss DJ, et al. Stem cells and cell therapies in lung biology and lung diseases. Proc Am Thorac Soc. 2011;8(3):223–72.PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Johnson LG, et al. Efficiency of gene transfer for restoration of normal airway epithelial function in cystic fibrosis. Nat Genet. 1992;2(1):21–5.PubMedCrossRefGoogle Scholar
  200. 200.
    Farmen SL, et al. Gene transfer of CFTR to airway epithelia: low levels of expression are sufficient to correct cl- transport and overexpression can generate basolateral CFTR. Am J Physiol Lung Cell Mol Physiol. 2005;289(6):L1123–30.PubMedCrossRefGoogle Scholar
  201. 201.
    Johnson LG, et al. Normalization of raised sodium absorption and raised calcium-mediated chloride secretion by adenovirus-mediated expression of cystic fibrosis transmembrane conductance regulator in primary human cystic fibrosis airway epithelial cells. J Clin Invest. 1995;95(3):1377–82.PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Goldman MJ, Yang Y, Wilson JM. Gene therapy in a xenograft model of cystic fibrosis lung corrects chloride transport more effectively than the sodium defect. Nat Genet. 1995;9(2):126–31.PubMedCrossRefGoogle Scholar
  203. 203.
    Nguyen PK, Riegler J, Wu JC. Stem cell imaging: from bench to bedside. Cell Stem Cell. 2014;14(4):431–44.PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Huang NF, et al. Embryonic stem cell-derived endothelial cells engraft into the ischemic hindlimb and restore perfusion. Arterioscler Thromb Vasc Biol. 2010;30(5):984–91.PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Kraitchman DL, et al. Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation. 2005;112(10):1451–61.PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Loi R, et al. Limited restoration of cystic fibrosis lung epithelium in vivo with adult bone marrow-derived cells. Am J Respir Crit Care Med. 2006;173(2):171–9.PubMedCrossRefGoogle Scholar
  207. 207.
    Bruscia EM, et al. Assessment of cystic fibrosis transmembrane conductance regulator (CFTR) activity in CFTR-null mice after bone marrow transplantation. Proc Natl Acad Sci U S A. 2006;103(8):2965–70.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Bruscia EM, et al. Engraftment of donor-derived epithelial cells in multiple organs following bone marrow transplantation into newborn mice. Stem Cells. 2006;24(10):2299–308.PubMedCrossRefGoogle Scholar
  209. 209.
    Wang X, et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature. 2003;422(6934):897–901.PubMedCrossRefGoogle Scholar
  210. 210.
    Vassilopoulos G, Wang PR, Russell DW. Transplanted bone marrow regenerates liver by cell fusion. Nature. 2003;422(6934):901–4.PubMedCrossRefPubMedCentralGoogle Scholar
  211. 211.
    Herzog EL, et al. Lung-specific nuclear reprogramming is accompanied by heterokaryon formation and Y chromosome loss following bone marrow transplantation and secondary inflammation. FASEB J. 2007;21(10):2592–601.PubMedCrossRefPubMedCentralGoogle Scholar
  212. 212.
    Rosenecker J, et al. Interaction of bronchoalveolar lavage fluid with polyplexes and lipoplexes: analysing the role of proteins and glycoproteins. J Gene Med. 2003;5(1):49–60.PubMedCrossRefPubMedCentralGoogle Scholar
  213. 213.
    Stern M, et al. The effect of mucolytic agents on gene transfer across a CF sputum barrier in vitro. Gene Ther. 1998;5(1):91–8.PubMedCrossRefPubMedCentralGoogle Scholar
  214. 214.
    Toma C, et al. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation. 2002;105(1):93–8.PubMedCrossRefPubMedCentralGoogle Scholar
  215. 215.
    Li Y, Lin F. Mesenchymal stem cells are injured by complement after their contact with serum. Blood. 2012;120(17):3436–43.PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008;8(9):726–36.PubMedCrossRefGoogle Scholar
  217. 217.
    Nasef A, Ashammakhi N, Fouillard L. Immunomodulatory effect of mesenchymal stromal cells: possible mechanisms. Regen Med. 2008;3(4):531–46.PubMedCrossRefPubMedCentralGoogle Scholar
  218. 218.
    Chamberlain G, et al. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 2007;25(11):2739–49.PubMedCrossRefPubMedCentralGoogle Scholar
  219. 219.
    Herberts CA, Kwa MS, Hermsen HP. Risk factors in the development of stem cell therapy. J Transl Med. 2011;9:29.PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 2003;4(5):346–58.PubMedCrossRefGoogle Scholar
  221. 221.
    Ferrari S, et al. Immunological hurdles to lung gene therapy. Clin Exp Immunol. 2003;132(1):1–8.PubMedPubMedCentralCrossRefGoogle Scholar
  222. 222.
    Swijnenburg RJ, et al. Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts. Proc Natl Acad Sci U S A. 2008;105(35):12991–6.PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Pearl JI, et al. Short-term immunosuppression promotes engraftment of embryonic and induced pluripotent stem cells. Cell Stem Cell. 2011;8(3):309–17.PubMedPubMedCentralCrossRefGoogle Scholar
  224. 224.
    Zappia E, et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood. 2005;106(5):1755–61.PubMedCrossRefGoogle Scholar
  225. 225.
    Djouad F, et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood. 2003;102(10):3837–44.PubMedCrossRefPubMedCentralGoogle Scholar
  226. 226.
    Griesenbach U, Alton EW. Cystic fibrosis gene therapy: successes, failures and hopes for the future. Expert Rev Respir Med. 2009;3(4):363–71.PubMedCrossRefGoogle Scholar
  227. 227.
    Murphy SV, et al. Use of trimetasphere metallofullerene MRI contrast agent for the non-invasive longitudinal tracking of stem cells in the lung. Methods. 2016;99:99–111.PubMedCrossRefGoogle Scholar
  228. 228.
    Vrtovec B, et al. Effects of intracoronary CD34+ stem cell transplantation in nonischemic dilated cardiomyopathy patients: 5-year follow-up. Circ Res. 2013;112(1):165–73.PubMedCrossRefGoogle Scholar
  229. 229.
    Vrtovec B, et al. Comparison of transendocardial and intracoronary CD34+ cell transplantation in patients with nonischemic dilated cardiomyopathy. Circulation. 2013;128(11 Suppl 1):S42–9.PubMedCrossRefGoogle Scholar
  230. 230.
    Chen IY, Wu JC. Cardiovascular molecular imaging: focus on clinical translation. Circulation. 2011;123(4):425–43.PubMedPubMedCentralCrossRefGoogle Scholar
  231. 231.
    Nguyen PK, et al. Potential strategies to address the major clinical barriers facing stem cell regenerative therapy for cardiovascular disease: a review. JAMA Cardiol. 2016;1(8):953–62.PubMedPubMedCentralCrossRefGoogle Scholar
  232. 232.
    Prockop DJ, Olson SD. Clinical trials with adult stem/progenitor cells for tissue repair: let's not overlook some essential precautions. Blood. 2007;109(8):3147–51.PubMedPubMedCentralCrossRefGoogle Scholar
  233. 233.
    Cui LL, et al. Clumping and viability of bone marrow derived Mesenchymal stromal cells under different preparation procedures: a flow Cytometry-based In vitro study. Stem Cells Int. 2016;2016:1764938.PubMedPubMedCentralCrossRefGoogle Scholar
  234. 234.
    Millar JE, et al. Administration of mesenchymal stem cells during ECMO results in a rapid decline in oxygenator performance. Thorax. 2019;74(2):194–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Steven T. Leung
    • 1
  • Timothy S. Leach
    • 1
    • 2
  • Anthony Atala
    • 1
    Email author
  • Sean V. Murphy
    • 1
    • 2
  1. 1.Wake Forest Institute for Regenerative MedicineWake Forest School of MedicineWinston-SalemUSA
  2. 2.Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Medical Center BoulevardWake Forest School of MedicineWinston-SalemUSA

Personalised recommendations