Advertisement

ScaffoMapping: Assisting Concept Mapping for Video Learners

  • Shan ZhangEmail author
  • Xiaojun Meng
  • Can Liu
  • Shengdong Zhao
  • Vibhor Sehgal
  • Morten Fjeld
Conference paper
  • 708 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11747)

Abstract

Previous research has shown that having learners construct concept maps can bring better learning outcome. However, in video learning scenario, there is not sufficient support for learners to create concept maps from educational videos. Through a preliminary study, we identified two main difficulties video learners face in creating concept maps: navigation difficulty and learning difficulty. To help users to overcome such difficulties, we design scaffolds to assist learners in concept mapping. We present ScaffoMapping, a system aiming for scaffolded concept map creation on educational videos through automatic concept extraction and timestamp generation. Our study, which compares ScaffoMapping with the baseline approach, shows that (1) Learners can create higher quality concept maps with ScaffoMapping. (2) ScaffoMapping enables better learning outcomes in video learning scenario.

Keywords

Concept map Scaffolding Video learning 

Notes

Acknowledgements

This research was funded by National University of Singapore Academic Research Fund T1 251RES1617. We thank Philippa Beckman and Barrie James Sutcliffe for proofreading, and Samangi Wadinambi Arachchi for her generous help with designing Fig. 4.

Supplementary material

Supplementary material 1 (mp4 11727 KB)

References

  1. 1.
  2. 2.
  3. 3.
  4. 4.
  5. 5.
    Ally, M.: Foundations of educational theory for online learning. Theory Pract. Online Learn. 2, 15–44 (2004)Google Scholar
  6. 6.
    Anderson, T., Kanuka, H.: Online social interchange, discord, and knowledge construction. J. Distance Educ. 13, 57–74 (1998)Google Scholar
  7. 7.
    Ausubel, D.P.: The psychology of meaningful verbal learning (1963)Google Scholar
  8. 8.
    Brezeale, D., Cook, D.J.: Automatic video classification: a survey of the literature. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 38(3), 416–430 (2008)CrossRefGoogle Scholar
  9. 9.
    Cañas, A.J., Novak, J.D.: Concept mapping using Cmaptools to enhance meaningful learning. In: Okada, A., Shum, S.B., Sherborne, T. (eds.) Knowledge Cartography. AIKP, pp. 25–46. Springer, London (2008).  https://doi.org/10.1007/978-1-84800-149-7_2CrossRefGoogle Scholar
  10. 10.
    Chang, K.E., Sung, Y.T., Chen, I.D.: The effect of concept mapping to enhance text comprehension and summarization. J. Exp. Educ. 71(1), 5–23 (2002)CrossRefGoogle Scholar
  11. 11.
    Chang, K.E., Sung, Y.T., Chen, S.F.: Learning through computer-based concept mapping with scaffolding aid. J. Comput. Assist. Learn. 17(1), 21–33 (2001)CrossRefGoogle Scholar
  12. 12.
    Cheung, L.S.: A constructivist approach to designing computer supported concept-mapping environment. Int. J. Instr. Media 33(2), 153–165 (2006)Google Scholar
  13. 13.
    Collins, A., Brown, J.S., Newman, S.E.: Cognitive apprenticeship: teaching the crafts of reading, writing, and mathematics. In: Knowing, Learning, and Instruction: Essays in Honor of Robert Glaser, vol. 18, pp. 32–42 (1989)Google Scholar
  14. 14.
    Dirican, A.C., Göktürk, M.: Psychophysiological measures of human cognitive states applied in human computer interaction. Procedia Comput. Sci. 3, 1361–1367 (2011)CrossRefGoogle Scholar
  15. 15.
    Divakaran, A., Forlines, C., Lanning, T., Shipman, S., Wittenburg, K.: Augmenting fast-forward and rewind for personal digital video recorders. In: Consumer Electronics, pp. 43–44 (2005)Google Scholar
  16. 16.
    Garrison, D.R., Cleveland-Innes, M.: Facilitating cognitive presence in online learning: interaction is not enough. Am. J. Distance Educ. 19(3), 133–148 (2005)CrossRefGoogle Scholar
  17. 17.
    Griffin, C.C., Malone, L.D., Kameenui, E.J.: Effects of graphic organizer instruction on fifth-grade students. J. Educ. Res. 89(2), 98–107 (1995)CrossRefGoogle Scholar
  18. 18.
    Hu, Y., Kautz, J., Yu, Y., Wang, W.: Speaker-following video subtitles. ACM Trans. Multimedia Comput. Commun. Appl. (TOMM) 11(2), 32 (2015)Google Scholar
  19. 19.
    Jansen, M., Heeren, W., van Dijk, B.: Videotrees: improving video surrogate presentation using hierarchy. In: International Workshop on Content-Based Multimedia Indexing, CBMI 2008, pp. 560–567. IEEE (2008)Google Scholar
  20. 20.
    Katayama, A.D., Robinson, D.H.: Getting students partially involved in note-taking using graphic organizers. J. Exp. Educ. 68(2), 119–133 (2000)CrossRefGoogle Scholar
  21. 21.
    Kwon, S.Y., Cifuentes, L.: The comparative effect of individually-constructed vs. collaboratively-constructed computer-based concept maps. Comput. Educ. 52(2), 365–375 (2009)CrossRefGoogle Scholar
  22. 22.
    Liu, C., Kim, J., Wang, H.C.: ConceptScape: collaborative concept mapping for video learning. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, p. 387. ACM (2018)Google Scholar
  23. 23.
    Luchini, K., et al.: Scaffolding in the small: designing educational supports for concept mapping on handheld computers. In: CHI 2002 Extended Abstracts on Human Factors in Computing Systems, pp. 792–793. ACM (2002)Google Scholar
  24. 24.
    McCagg, E.C., Dansereau, D.F.: A convergent paradigm for examining knowledge mapping as a learning strategy. J. Educ. Res. 84(6), 317–324 (1991)CrossRefGoogle Scholar
  25. 25.
    Monserrat, T.J.K.P., Zhao, S., McGee, K., Pandey, A.V.: NoteVideo: facilitating navigation of blackboard-style lecture videos. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1139–1148. ACM (2013)Google Scholar
  26. 26.
    Novak, J.D.: Concept maps and Vee diagrams: two metacognitive tools to facilitate meaningful learning. Instr. Sci. 19(1), 29–52 (1990)CrossRefGoogle Scholar
  27. 27.
    Novak, J.D., Cañas, A.J.: The theory underlying concept maps and how to construct and use them (2008)Google Scholar
  28. 28.
    Oliver, K.: An investigation of concept mapping to improve the reading comprehension of science texts. J. Sci. Educ. Technol. 18(5), 402–414 (2009)CrossRefGoogle Scholar
  29. 29.
    Pavel, A., Hartmann, B., Agrawala, M.: Video digests: a browsable, skimmable format for informational lecture videos. In: Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology, pp. 573–582. ACM (2014)Google Scholar
  30. 30.
    Ramos, J., et al.: Using TF-IDF to determine word relevance in document queries. In: Proceedings of the First Instructional Conference on Machine Learning, vol. 242, pp. 133–142 (2003)Google Scholar
  31. 31.
    Schwab, M., et al.: Booc.io: an education system with hierarchical concept maps. IEEE Trans. Vis. Comput. Graph. 23(1), 571–580 (2017)CrossRefGoogle Scholar
  32. 32.
    Seidel, N.: Making web video accessible: interaction design patterns for assistive video learning environments. In: Proceedings of the 20th European Conference on Pattern Languages of Programs, p. 17. ACM (2015)Google Scholar
  33. 33.
    Shin, H.V., Berthouzoz, F., Li, W., Durand, F.: Visual transcripts: lecture notes from blackboard-style lecture videos. ACM Trans. Graph. (TOG) 34(6), 240 (2015)CrossRefGoogle Scholar
  34. 34.
    Shin, H., Ko, E.Y., Williams, J.J., Kim, J.: Understanding the effect of in-video prompting on learners and instructors. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, p. 319. ACM (2018)Google Scholar
  35. 35.
    Taylor, B.M., Beach, R.W.: The effects of text structure instruction on middle-grade students’ comprehension and production of expository text. Reading Res. Q. 19, 134–146 (1984)CrossRefGoogle Scholar
  36. 36.
    Wang, F., Li, X., Lei, W., Huang, C., Yin, M., Pong, T.-C.: Constructing learning maps for lecture videos by exploring Wikipedia knowledge. In: Ho, Y.-S., Sang, J., Ro, Y.M., Kim, J., Wu, F. (eds.) PCM 2015. LNCS, vol. 9314, pp. 559–569. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24075-6_54CrossRefGoogle Scholar
  37. 37.
    Wang, S., Walker, E., Wylie, R.: What matters in concept mapping? Maps learners create or how they create them. In: André, E., Baker, R., Hu, X., Rodrigo, M.M.T., du Boulay, B. (eds.) AIED 2017. LNCS (LNAI), vol. 10331, pp. 406–417. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-61425-0_34CrossRefGoogle Scholar
  38. 38.
    Yadav, K., et al.: Content-driven multi-modal techniques for non-linear video navigation. In: Proceedings of the 20th International Conference on Intelligent User Interfaces, pp. 333–344. ACM (2015)Google Scholar
  39. 39.
    Yang, H., Siebert, M., Luhne, P., Sack, H., Meinel, C.: Automatic lecture video indexing using video OCR technology. In: 2011 IEEE International Symposium on Multimedia (ISM), pp. 111–116. IEEE (2011)Google Scholar
  40. 40.
    Zubrinic, K., Kalpic, D., Milicevic, M.: The automatic creation of concept maps from documents written using morphologically rich languages. Expert Syst. Appl. 39(16), 12709–12718 (2012)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  1. 1.NUS-HCI LabNational University of SingaporeSingaporeSingapore
  2. 2.Noah’s Ark LabHuawei TechnologiesShenzhenChina
  3. 3.School of Creative MediaCity University of Hong KongKowloonHong Kong
  4. 4.t2i LabChalmers University of TechnologyGothenburgSweden

Personalised recommendations