Advertisement

Equilibrium Phase Transitions in Statistical Physics

  • Tian Ma
  • Shouhong Wang
Chapter

Abstract

A principal objective in the study of equilibrium phase transitions is to capture the transitions from one equilibrium to another and to study the nature or order of such transitions. The study of equilibrium phase transitions presented in this book involves a combination of modeling, mathematical analysis, and physical predictions. First, the standard model for a thermodynamic system is derived using the recently discovered potential-descending principle (PDP), addressed in Chap.  7. Second, all equilibrium phase transitions are fully characterized by three basic theorems. Third, the dynamical law of fluctuations is derived, and we show that the standard model, together with the dynamic law of fluctuation, offers correct information for critical exponents. Fourth, the theory is applied to gas-liquid transitions, ferromagnetism, binary systems, superconductivity, and liquid heliums, leading to various physical predictions and insights to the underlying physical problems.

References

  1. Aftalion, A. and Q. Du (2002). The bifurcation diagrams for the Ginzburg-Landau system of superconductivity. Phys. D 163(1-2), 94–105.MathSciNetCrossRefGoogle Scholar
  2. Bates, P. W. and P. C. Fife (1993). The dynamics of nucleation for the Cahn-Hilliard equation. SIAM J. Appl. Math. 53(4), 990–1008.MathSciNetCrossRefGoogle Scholar
  3. Cahn, J. and J. E. Hillard (1957). Free energy of a nonuniform system i. interfacial energy. J. Chemical Physics 28, 258–267.Google Scholar
  4. Chandrasekhar, S. (1981). Hydrodynamic and Hydromagnetic Stability. Dover Publications, Inc.zbMATHGoogle Scholar
  5. de Gennes, P. (1966). Superconductivity of Metals and Alloys. W. A. Benjamin.zbMATHGoogle Scholar
  6. del Pino, M., P. L. Felmer, and P. Sternberg (2000). Boundary concentration for eigenvalue problems related to the onset of superconductivity. Comm. Math. Phys. 210(2), 413–446.MathSciNetCrossRefGoogle Scholar
  7. Du, Q., M. D. Gunzburger, and J. S. Peterson (1992). Analysis and approximation of the Ginzburg-Landau model of superconductivity. SIAM Rev. 34(1), 54–81.MathSciNetCrossRefGoogle Scholar
  8. Ehrenfest, P. (1933). Phasenumwandlungen im ueblichen und erweiterten Sinn, classifiziert nach den entsprechenden Singularitaeten des thermodynamischen Potentiales. NV Noord-Hollandsche Uitgevers Maatschappij.Google Scholar
  9. Fisher, M. (1964). Specific heat of a gas near the critical point. Physical Review 136:6A, A1599–A1604.CrossRefGoogle Scholar
  10. Ginzburg, V. L. (2004). On superconductivity and superfluidity (what i have and have not managed to do), as well as on the ’physical minimum’ at the beginning of the xxi century. Phys.-Usp. 47, 1155–1170.CrossRefGoogle Scholar
  11. Gor’kov, L. (1968). Generalization of the Ginzburg-Landau equations for non-stationary problems in the case of alloys with paramagnetic impurities. Sov. Phys. JETP 27, 328–334.Google Scholar
  12. Kleman, M. and O. D. Laverntovich (2007). Soft matter physics: an introduction. Springer Science & Business Media.Google Scholar
  13. Langer, J. (1971). Theory of spinodal decomposition in allays. Ann. of Physics 65, 53–86.CrossRefGoogle Scholar
  14. Liu, R., T. Ma, S. Wang, and J. Yang (2017a). Dynamic theory of fluctuations and critical exponents of thermodynamic phase transitions. hal-01674269.Google Scholar
  15. Liu, R., T. Ma, S. Wang, and J. Yang (2019). Thermodynamical potentials of classical and quantum systems. Discrete & Continuous Dynamical Systems - B; see also hal-01632278(2017) 24, 1411.Google Scholar
  16. Ma, T., R. Liu, and J. Yang (2018). Physical World from the Mathematical Point of View: Statistical Physics and Critical Phase Transition Theory (in Chinese). Science Press, Beijing.Google Scholar
  17. Ma, T. and S. Wang (2005a). Bifurcation and stability of superconductivity. J. Math. Phys. 46(9), 095112, 31.MathSciNetCrossRefGoogle Scholar
  18. Ma, T. and S. Wang (2005b). Bifurcation theory and applications, Volume 53 of World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ.Google Scholar
  19. Ma, T. and S. Wang (2005d). Geometric theory of incompressible flows with applications to fluid dynamics, Volume 119 of Mathematical Surveys and Monographs. Providence, RI: American Mathematical Society.CrossRefGoogle Scholar
  20. Ma, T. and S. Wang (2008a). Dynamic model and phase transitions for liquid helium. Journal of Mathematical Physics 49:073304, 1–18.MathSciNetzbMATHGoogle Scholar
  21. Ma, T. and S. Wang (2008b). Dynamic phase transition theory in PVT systems. Indiana University Mathematics Journal 57:6, 2861–2889.MathSciNetCrossRefGoogle Scholar
  22. Ma, T. and S. Wang (2008c). Dynamic transitions for ferromagnetism. Journal of Mathematical Physics 49:053506, 1–18.Google Scholar
  23. Ma, T. and S. Wang (2008e). Superfluidity of helium-3. Physica A: Statistical Mechanics and its Applications 387:24, 6013–6031.CrossRefGoogle Scholar
  24. Ma, T. and S. Wang (2009b). Cahn-Hilliard equations and phase transition dynamics for binary systems. Dist. Cont. Dyn. Systs., Ser. B 11:3, 741–784.Google Scholar
  25. Ma, T. and S. Wang (2009c). Phase separation of binary systems. Physica A: Statistical Physics and its Applications 388:23, 4811–4817.CrossRefGoogle Scholar
  26. Ma, T. and S. Wang (2009d). Phase transition and separation for mixture of liquid he-3 and he-4, in lev davidovich landau and his impact on contemporary theoretical physics, horizons in world physics, edited by A. Sakaji and I. Licata. 264, 107–119.Google Scholar
  27. Ma, T. and S. Wang (2011e). Third-order gas-liquid phase transition and the nature of Andrews critical point. AIP Advances 1, 042101.CrossRefGoogle Scholar
  28. Ma, T. and S. Wang (2017a). Dynamic law of physical motion and potential-descending principle. J. Math. Study 50:3, 215–241; see also HAL preprint: hal--01558752.Google Scholar
  29. Ma, T. and S. Wang (2017b). Dynamical theory of thermodynamic phase transitions. Hal preprint: hal-01568201.Google Scholar
  30. Ma, T. and S. Wang (2017e). Topological Phase Transitions I: Quantum Phase Transitions. Hal preprint: hal-01651908.Google Scholar
  31. Nishikawa, K. and T. Morita (1998). Fluid behavior at supercritical states studied by small-angle X-ray scattering. Journal of Supercritical Fluid 13, 143–148.CrossRefGoogle Scholar
  32. Novick-Cohen, A. and L. A. Segel (1984). Nonlinear aspects of the Cahn-Hilliard equation. Phys. D 10(3), 277–298.MathSciNetCrossRefGoogle Scholar
  33. Onuki, O. (2002). Phase transition dynamics. Cambridge Univ. Press..CrossRefGoogle Scholar
  34. Pismen, L. M. (2006). Patterns and Interfaces in Dissipative Dynamics. Springer, Berlin.zbMATHGoogle Scholar
  35. Reichl, L. E. (1998). A modern course in statistical physics (Second ed.). A Wiley-Interscience Publication. New York: John Wiley & Sons Inc.zbMATHGoogle Scholar
  36. Schmid, A. (1966). A time dependent Ginzburg-Landau equation and its application to the problem of resistivity in the mixed state. Phys. Kondens. Mater. 5, 302–317.Google Scholar
  37. Shen, J. and X. Yang (2010). Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete Contin. Dyn. Syst. 28(4), 1669–1691.MathSciNetzbMATHGoogle Scholar
  38. Stanley, H. E. (1971). Introduction to Phase Transitions and Critical Phenomena. Oxford University Press, New York and Oxford.Google Scholar
  39. Tang, Q. and S. Wang (1995). Time dependent Ginzburg-Landau equations of superconductivity. Phys. D 88(3-4), 139–166.MathSciNetCrossRefGoogle Scholar
  40. Tinkham, M. (1996). Introduction to Superconductivity. McGraw-Hill, Inc.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tian Ma
    • 1
  • Shouhong Wang
    • 2
  1. 1.Department of MathematicsSichuan UniversitySichuanChina
  2. 2.Department of MathematicsIndiana UniversityBloomingtonUSA

Personalised recommendations