Advertisement

Introduction to Dynamic Transitions

  • Tian Ma
  • Shouhong Wang
Chapter

Abstract

The study of phase transitions is an active field with a long history. This book aims to provide a comprehensive, unified, and balanced account of both dynamic and topological phase transition theories and their applications to statistical systems, quantum systems, classical and geophysical fluid dynamics, biological and chemical systems, and climate dynamics. The dynamic phase transition theory establishes a dynamic transition principle, Principle 1, following the philosophy of searching for a complete set of transition states. We present in this chapter a brief introduction to this dynamic transition theory together with an introduction to first-principle approach to fundamental laws of physics, and to fundamental issues of dynamic phase transitions motivated by problems in the nonlinear sciences.

References

  1. Cahn, J. and J. E. Hillard (1957). Free energy of a nonuniform system i. interfacial energy. J. Chemical Physics 28, 258–267.Google Scholar
  2. Chandrasekhar, S. (1981). Hydrodynamic and Hydromagnetic Stability. Dover Publications, Inc.zbMATHGoogle Scholar
  3. Drazin, P. and W. Reid (1981). Hydrodynamic Stability. Cambridge University Press.zbMATHGoogle Scholar
  4. Eckhardt, B., T. M. Schneider, B. Hof, and J. Westerweel (2007). Turbulence transition in pipe flow. Annu. Rev. Fluid Mech. 39, 447–468.MathSciNetCrossRefGoogle Scholar
  5. Fisher, M. (1964). Specific heat of a gas near the critical point. Physical Review 136:6A, A1599–A1604.CrossRefGoogle Scholar
  6. Ghil, M., T. Ma, and S. Wang (2001). Structural bifurcation of 2-D incompressible flows. Indiana Univ. Math. J. 50(Special Issue), 159–180. Dedicated to Professors Ciprian Foias and Roger Temam (Bloomington, IN, 2000).Google Scholar
  7. Ghil, M., T. Ma, and S. Wang (2005). Structural bifurcation of 2-D nondivergent flows with Dirichlet boundary conditions: applications to boundary-layer separation. SIAM J. Appl. Math. 65(5), 1576–1596 (electronic).MathSciNetCrossRefGoogle Scholar
  8. Glansdorff, P. and I. Prigogine (1971). Structure, stability, and fluctuations. Wiley-Interscience, New York.zbMATHGoogle Scholar
  9. Kleman, M. and O. D. Laverntovich (2007). Soft matter physics: an introduction. Springer Science & Business Media.Google Scholar
  10. Landau, L. D. and E. M. Lifshitz (1975). Course of theoretical physics, Vol. 2 (Fourth ed.). Oxford: Pergamon Press. The classical theory of fields, Translated from the Russian by Morton Hamermesh.Google Scholar
  11. Ma, T. and S. Wang (2001). Structure of 2D incompressible flows with the Dirichlet boundary conditions. Discrete Contin. Dyn. Syst. Ser. B 1(1), 29–41.MathSciNetzbMATHGoogle Scholar
  12. Ma, T. and S. Wang (2004b). Dynamic bifurcation and stability in the Rayleigh-Bénard convection. Commun. Math. Sci. 2(2), 159–183.MathSciNetCrossRefGoogle Scholar
  13. Ma, T. and S. Wang (2005b). Bifurcation theory and applications, Volume 53 of World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ.Google Scholar
  14. Ma, T. and S. Wang (2005d). Geometric theory of incompressible flows with applications to fluid dynamics, Volume 119 of Mathematical Surveys and Monographs. Providence, RI: American Mathematical Society.CrossRefGoogle Scholar
  15. Ma, T. and S. Wang (2007a). Rayleigh-Bénard convection: dynamics and structure in the physical space. Commun. Math. Sci. 5(3), 553–574.MathSciNetCrossRefGoogle Scholar
  16. Ma, T. and S. Wang (2007b). Stability and Bifurcation of Nonlinear Evolutions Equations. Science Press, Beijing.Google Scholar
  17. Ma, T. and S. Wang (2008a). Dynamic model and phase transitions for liquid helium. Journal of Mathematical Physics 49:073304, 1–18.MathSciNetzbMATHGoogle Scholar
  18. Ma, T. and S. Wang (2008b). Dynamic phase transition theory in PVT systems. Indiana University Mathematics Journal 57:6, 2861–2889.MathSciNetCrossRefGoogle Scholar
  19. Ma, T. and S. Wang (2009a). Boundary-layer and interior separations in the Taylor-Couette-Poiseuille flow. J. Math. Phys. 50(3), 033101, 29.MathSciNetCrossRefGoogle Scholar
  20. Ma, T. and S. Wang (2009b). Cahn-Hilliard equations and phase transition dynamics for binary systems. Dist. Cont. Dyn. Systs., Ser. B 11:3, 741–784.Google Scholar
  21. Ma, T. and S. Wang (2009c). Phase separation of binary systems. Physica A: Statistical Physics and its Applications 388:23, 4811–4817.CrossRefGoogle Scholar
  22. Ma, T. and S. Wang (2011e). Third-order gas-liquid phase transition and the nature of Andrews critical point. AIP Advances 1, 042101.CrossRefGoogle Scholar
  23. Ma, T. and S. Wang (2015a). Mathematical Principles of Theoretical Physics. Science Press, 524 pages.Google Scholar
  24. Ma, T. and S. Wang (2017a). Dynamic law of physical motion and potential-descending principle. J. Math. Study 50:3, 215–241; see also HAL preprint: hal--01558752.Google Scholar
  25. Nicolis, G. and I. Prigogine (1977). Self-organization in nonequilibrium systems. Wiley-Interscience, New York.zbMATHGoogle Scholar
  26. Nishikawa, K. and T. Morita (1998). Fluid behavior at supercritical states studied by small-angle X-ray scattering. Journal of Supercritical Fluid 13, 143–148.CrossRefGoogle Scholar
  27. Novick-Cohen, A. and L. A. Segel (1984). Nonlinear aspects of the Cahn-Hilliard equation. Phys. D 10(3), 277–298.MathSciNetCrossRefGoogle Scholar
  28. Onuki, O. (2002). Phase transition dynamics. Cambridge Univ. Press..CrossRefGoogle Scholar
  29. Philander, S. G. and A. Fedorov (2003). Is el niño sporadic or cyclic? Annu. Rev. Earth Planet. Sci. 31, 579–594.CrossRefGoogle Scholar
  30. Pismen, L. M. (2006). Patterns and Interfaces in Dissipative Dynamics. Springer, Berlin.zbMATHGoogle Scholar
  31. Prandtl, L. (1904). In Verhandlungen des dritten internationalen Mathematiker-Kongresses. Heidelberg, Leipeizig, pp. 484–491.Google Scholar
  32. Prigogine, I. and R. Lefever (1968). Symmetry breaking instabilities in dissipative systems. II. J. Chem. Phys. 48, 1695.CrossRefGoogle Scholar
  33. Raguin, L. G. and J. G. Georgiadis (2004). Kinematics of the stationary helical vortex mode in Taylor-Couette-Poiseuille flow. J. Fluid Mech. 516, 125–154.MathSciNetCrossRefGoogle Scholar
  34. Rayleigh, L. (1916). On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side. Phil. Mag. 32(6), 529–46.CrossRefGoogle Scholar
  35. Reichl, L. E. (1998). A modern course in statistical physics (Second ed.). A Wiley-Interscience Publication. New York: John Wiley & Sons Inc.zbMATHGoogle Scholar
  36. Stanley, H. E. (1971). Introduction to Phase Transitions and Critical Phenomena. Oxford University Press, New York and Oxford.Google Scholar
  37. Yang, C. N. and R. Mills (1954). Conservation of isotopic spin and isotopic gauge invariance. Physical Review 96, 191–195.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tian Ma
    • 1
  • Shouhong Wang
    • 2
  1. 1.Department of MathematicsSichuan UniversitySichuanChina
  2. 2.Department of MathematicsIndiana UniversityBloomingtonUSA

Personalised recommendations