Advertisement

Nanomaterials: A Promising Tool for Drug Delivery

  • Priyanka Kumari
  • Suaib Luqman
  • Abha MeenaEmail author
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 39)

Abstract

Nanotechnology is an ingenious approach that has potential utilization in the drug delivery system. Presently, many of the natural or synthetic nanomaterials are under investigation for their potential to be used as drug delivery tools. Nanomaterials have also shown potential impeding interest in overcoming new/existing drug problems like low solubility, bioavailability, target specificity, toxicity, stability, side effects, and early-stage degradation. In this chapter, we have discussed how nanomaterials act as a prospective tool in overcoming such precincts and their role in different therapies and drug delivery approaches. In addition, a list of the nanomaterials which are or could be used as a drug delivery tool is also mentioned along with the selected success stories besides certain limitations. In the end, the challenges faced by nanomaterials in biomedical science have also been pointed out.

Keywords

Drug carrier Nanomaterial Cancer therapy Drug delivery 

Notes

Acknowledgment

We are grateful to the director of CSIR (Central Institute of Medicinal and Aromatic Plants), Lucknow, for rendering essential facilities required for the experimental work and literature. PK acknowledges the University Grants Commission (UGC) for fellowship.

References

  1. Abbasi E, Aval SF, Akbarzadeh A, Milani M, Nasrabadi HT, Joo SW, Hanifehpour Y, Nejati-Koshki K, Pashaei-Asl R (2014) Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett 9(1):247.  https://doi.org/10.1186/1556-276X-9-247CrossRefPubMedPubMedCentralGoogle Scholar
  2. Abreu AS, Castanheira EM, Queiroz MJ, Ferreira PM, Vale-Silva LA, Pinto E (2011) Nanoliposomes for encapsulation and delivery of the potential antitumoral methyl 6-methoxy-3-(4-methoxyphenyl)-1H-indole-2-carboxylate. Nanoscale Res Lett 6(1):482.  https://doi.org/10.1186/1556-276X-6-482CrossRefPubMedPubMedCentralGoogle Scholar
  3. Agnihotri SA, Aminabhavi TM (2006) Novel interpenetrating network chitosan-poly(ethylene oxide-g-acrylamide) hydrogel microspheres for the controlled release of capecitabine. Int J Pharm 324(2):103–115.  https://doi.org/10.1016/J.IJPHARM.2006.05.061CrossRefPubMedGoogle Scholar
  4. Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6(2):105–121.  https://doi.org/10.1016/J.JARE.2013.07.006CrossRefPubMedGoogle Scholar
  5. Aillon KL, Xie Y, El-Gendy N, Berkland CJ, Forrest ML (2009) Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv Drug Deliv Rev 61(6):457–466.  https://doi.org/10.1016/j.addr.2009.03.010CrossRefPubMedPubMedCentralGoogle Scholar
  6. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8(1):102.  https://doi.org/10.1186/1556-276X-8-102CrossRefPubMedPubMedCentralGoogle Scholar
  7. Alaqad K, Saleh TA (2016) Gold and silver nanoparticles: synthesis methods, characterization routes and applications towards drugs. J Environ Anal Toxicol 6(384):2161–0525.  https://doi.org/10.4172/2161-0525.1000384CrossRefGoogle Scholar
  8. Albanese A, Tang PS, Chan WC (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16.  https://doi.org/10.1146/annurev-bioeng-071811-150124CrossRefPubMedGoogle Scholar
  9. Alkilani AZ, McCrudden MT, Donnelly R (2015) Transdermal drug delivery: innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics 7(4):438–470.  https://doi.org/10.3390/pharmaceutics7040438CrossRefPubMedGoogle Scholar
  10. Anjum S, Arora A, Alam MS, Gupta B (2016) Development of antimicrobial and scar preventive chitosan hydrogel wound dressings. Int J Pharm 508(1–2):92–101.  https://doi.org/10.1016/J.IJPHARM.2016.05.013CrossRefPubMedGoogle Scholar
  11. Antoine AA, Jonathan Lawrence BS (2013) Micelles: chemotherapeutic drug delivery. Clin Pharmacol Biopharm 02:1–4.  https://doi.org/10.4172/2167-065X.1000e114CrossRefGoogle Scholar
  12. Araujo L, Lobenberg R, Kreuter J (1999) Influence of the surfactant concentration on the body distribution of nanoparticles. J Drug Target 6(5):373–385.  https://doi.org/10.3109/10611869908996844CrossRefPubMedGoogle Scholar
  13. Argyo C, Weiss V, Brauchle C, Bein T (2013) Multifunctional mesoporous silica nanoparticles as a universal platform for drug delivery. Chem Mater 26(1):435–451.  https://doi.org/10.1021/cm402592tCrossRefGoogle Scholar
  14. Baek JS, Kim BS, Puri A, Kumar K, Cho CW (2016) Stability of paclitaxel-loaded solid lipid nanoparticles in the presence of 2-hydoxypropyl-β-cyclodextrin. Arch Pharm Res 39(6):785–793.  https://doi.org/10.1007/s12272-016-0753-5CrossRefPubMedGoogle Scholar
  15. Baird JK, Hoffman SL (2004) Primaquine therapy for malaria. Clin Infect Dis 39(9):1336–1345.  https://doi.org/10.1086/424663CrossRefPubMedGoogle Scholar
  16. Bajpai AK, Choubey J (2006) Design of gelatin nanoparticles as swelling controlled delivery system for chloroquine phosphate. J Mater Sci Mater Med 17(4):345–358.  https://doi.org/10.1007/s10856-006-8235-9CrossRefPubMedGoogle Scholar
  17. Banik BL, Fattahi P, Brown JL (2016) Polymeric nanoparticles: the future of nanomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8(2):271–299.  https://doi.org/10.1002/wnan.1364CrossRefPubMedGoogle Scholar
  18. Baptista P, Pereira E, Eaton P, Doria G, Miranda A, Gomes I, Quaresma P, Franco R (2008) Gold nanoparticles for the development of clinical diagnosis methods. Anal Bioanal Chem 391(3):943–950.  https://doi.org/10.1007/s00216-007-1768-zCrossRefPubMedGoogle Scholar
  19. Baroli B, Ennas MG, Loffredo F, Isola M, Pinna R, Lopez-Quintela MA (2007) Penetration of metallic nanoparticles in human full-thickness skin. J Investig Dermatol 127(7):1701–1712.  https://doi.org/10.1038/SJ.JID.5700733CrossRefPubMedGoogle Scholar
  20. Baxter RM, Dai T, Kimball J, Wang E, Hamblin MR, Wiesmann WP, McCarthy SJ, Baker SM (2013) Chitosan dressing promotes healing in third degree burns in mice: gene expression analysis shows biphasic effects for rapid tissue regeneration and decreased fibrotic signaling. J Biomed Mater Res A 101(2):340–348.  https://doi.org/10.1002/jbm.a.34328CrossRefPubMedGoogle Scholar
  21. Beyene HD, Werkneh AA, Bezabh HK, Ambaye TG (2017) Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. Sustain Mater Technol 13:18–23.  https://doi.org/10.1016/J.SUSMAT.2017.08.001CrossRefGoogle Scholar
  22. Bharti C, Nagaich U, Pal AK, Gulati N (2015) Mesoporous silica nanoparticles in target drug delivery system: a review. Int J Pharm Investig 5(3):124.  https://doi.org/10.4103/2230-973X.160844CrossRefPubMedPubMedCentralGoogle Scholar
  23. Bhawana BRK, Buttar HS, Jain VK, Jain N (2011) Curcumin nanoparticles: preparation, characterization, and antimicrobial study. J Agric Food Chem 59:2056–2061.  https://doi.org/10.1021/jf104402tCrossRefPubMedGoogle Scholar
  24. Bilan R, Fleury F, Nabiev I, Sukhanova A (2015) Quantum dot surface chemistry and functionalization for cell targeting and imaging. Bioconjug Chem 26(4):609–624.  https://doi.org/10.1021/acs.bioconjchem.5b00069CrossRefPubMedGoogle Scholar
  25. Bilan R, Nabiev I, Sukhanova A (2016) Quantum dot-based nanotools for bioimaging, diagnostics, and drug delivery. Chembiochem 17(22):2103–2114.  https://doi.org/10.1002/cbic.201600357CrossRefPubMedGoogle Scholar
  26. Blazkova I, Viet Nguyen H, Kominkova M, Konecna R, Chudobova D, Krejcova L, Kopel P, Hynek D, Zitka O, Beklova M, Adam V, Kizek R (2014) Fullerene as a transporter for doxorubicin investigated by analytical methods and in vivo imaging. Electrophoresis 35(7):1040–1049.  https://doi.org/10.1002/elps.201300393CrossRefPubMedGoogle Scholar
  27. Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR (2016) Nanoparticle-based medicines: a review of fda-approved materials and clinical trials to date. Pharm Res 33(10):2373–2387.  https://doi.org/10.1007/s11095-016-1958-5CrossRefPubMedGoogle Scholar
  28. Bolskar RD (2016) Fullerenes for drug delivery. In: Encyclopedia of nanotechnology. Springer, Dordrecht, pp 1267–1281CrossRefGoogle Scholar
  29. Bu HZ, Gukasyan HJ, Goulet L, Lou XJ, Xiang C, Koudriakova T (2007) Ocular disposition, pharmacokinetics, efficacy and safety of nanoparticle-formulated ophthalmic drugs. Curr Drug Metab 8(2):91–107.  https://doi.org/10.2174/138920007779815977CrossRefPubMedGoogle Scholar
  30. Budhian A, Siegel SJ, Winey KI (2005) Production of haloperidol-loaded PLGA nanoparticles for extended controlled drug release of haloperidol. J Microencapsul 22(7):773–785.  https://doi.org/10.1080/02652040500273753CrossRefPubMedGoogle Scholar
  31. Bulbake U, Doppalapudi S, Kommineni N, Khan W (2017) Liposomal formulations in clinical use: an updated review. Pharmaceutics 9(2):12.  https://doi.org/10.3390/pharmaceutics9020012CrossRefPubMedCentralGoogle Scholar
  32. Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):MR17–MR71.  https://doi.org/10.1116/1.2815690CrossRefGoogle Scholar
  33. Cai X, Luo Y, Zhang W, Du D, Lin Y (2016) pH-sensitive ZnO quantum dots–doxorubicin nanoparticles for lung cancer targeted drug delivery. ACS Appl Mater Interfaces 8(34):22442–22450.  https://doi.org/10.1021/acsami.6b04933CrossRefPubMedGoogle Scholar
  34. Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267.  https://doi.org/10.1016/J.EURPOLYMJ.2014.11.024CrossRefGoogle Scholar
  35. Cavalli R, Gasco MR, Chetoni P, Burgalassi S, Saettone MF (2002) Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. Int J Pharm 238(1–2):241–245.  https://doi.org/10.1016/S0378-5173(02)00080-7CrossRefPubMedGoogle Scholar
  36. Chan JM, Valencia PM, Zhang L, Langer R, Farokhzad OC (2010) Polymeric nanoparticles for drug delivery. Cancer Nanotechnol. Humana Press:163–175.  https://doi.org/10.1007/978-1-60761-609-2_11Google Scholar
  37. Chen Z, Meng H, Xing G, Chen C, Zhao Y, Jia G, Wang T, Yuan H, Ye C, Zhao F, Chai Z, Zhu C, Fang X, Ma B, Wan L (2006) Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 163(2):109–120.  https://doi.org/10.1016/J.TOXLET.2005.10.003CrossRefPubMedGoogle Scholar
  38. Chen J, Wang D, Xi J, Au L, Siekkine A, Warsen A, Li ZY, Zhang H, Xia Y, Li X (2007) Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett 7(5):1318–1322.  https://doi.org/10.1021/NL070345GCrossRefPubMedPubMedCentralGoogle Scholar
  39. Chen FH, Zhang LM, Chen QT, Zhang Y, Zhang ZJ (2010) Synthesis of a novel magnetic drug delivery system composed of doxorubicin-conjugated Fe3O4 nanoparticle cores and a PEG-functionalized porous silica shell. Chem Commun 46(45):8633–8635.  https://doi.org/10.1039/c0cc02577aCrossRefGoogle Scholar
  40. Chen Z, Wang Y, Ba T, Li Y, Pu J, Chen T, Song Y, Gu Y, Qian Q, Yang J, Jia G (2014) Genotoxic evaluation of titanium dioxide nanoparticles in vivo and in vitro. Toxicol Lett 226(3):314–319.  https://doi.org/10.1016/j.toxlet.2014.02.020CrossRefPubMedGoogle Scholar
  41. Chiu HW, Xia T, Lee YH, Chen CW, Tsai JC, Wang YJ (2015) Cationic polystyrene nanospheres induce autophagic cell death through the induction of endoplasmic reticulum stress. Nanoscale 7:736–746.  https://doi.org/10.1039/c4nr05509hCrossRefPubMedGoogle Scholar
  42. Cholkar K, Patel A, Vadlapudi AD, Mitra AK (2012) Novel nanomicellar formulation approaches for anterior and posterior segment ocular drug delivery. Recent Pat Nanomed 2(2):82–95.  https://doi.org/10.2174/1877912311202020082CrossRefPubMedPubMedCentralGoogle Scholar
  43. Civiale C, Licciardi M, Cavallaro G, Giammona G, Mazzone MG (2009) Polyhydroxyethylaspartamide-based micelles for ocular drug delivery. Int J Pharm 378:177–186.  https://doi.org/10.1016/j.ijpharm.2009.05.028CrossRefPubMedGoogle Scholar
  44. Cohignac V, Landry M, Boczkowski J, Lanone S (2014) Autophagy as a possible underlying mechanism of nanomaterial toxicity. Nano 4:548–582.  https://doi.org/10.3390/nano4030548CrossRefGoogle Scholar
  45. Contado C (2015) Nanomaterials in consumer products: a challenging analytical problem. Front Chem 3:48.  https://doi.org/10.3389/fchem.2015.00048CrossRefPubMedPubMedCentralGoogle Scholar
  46. Daima HK, Shankar S, Anderson A, Periasamy S, Bhargava S, Bansal V (2018) Complexation of plasmid DNA and poly(ethylene oxide)/poly(propylene oxide) polymers for safe gene delivery. Environ Chem Lett 2018:1–6.  https://doi.org/10.1007/s10311-018-0756-1CrossRefGoogle Scholar
  47. Dash TK, Konkimalla VB (2012) Poly-є-caprolactone based formulations for drug delivery and tissue engineering: a review. J Control Release 158(1):15–33.  https://doi.org/10.1016/J.JCONREL.2011.09.064CrossRefPubMedGoogle Scholar
  48. Davis ME, Chen Z, Shin DM (2010a) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nanosci Technol Collect Rev Nat J:239–250.  https://doi.org/10.1142/9789814287005_0025CrossRefGoogle Scholar
  49. Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD, Ribas A (2010b) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464(7291):1067.  https://doi.org/10.1038/nature08956CrossRefPubMedPubMedCentralGoogle Scholar
  50. De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3(2):133CrossRefGoogle Scholar
  51. De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJ, Geertsma RE (2008) Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29(12):1912–1919.  https://doi.org/10.1016/J.BIOMATERIALS.2007.12.037CrossRefPubMedGoogle Scholar
  52. de Jonge MJ, Slingerland M, Loos WJ, Wiemer EA, Burger H, Mathijssen RH, Kroep JR, den Hollander MA, van der Biessen D, Lam MH, Verweij J (2010) Early cessation of the clinical development of LiPlaCis, a liposomal cisplatin formulation. Eur J Cancer 46(16):3016–3021.  https://doi.org/10.1016/j.ejca.2010.07.015CrossRefPubMedGoogle Scholar
  53. Derakhshandeh K, Erfan M, Dadashzadeh S (2007) Encapsulation of 9-nitrocamptothecin, a novel anticancer drug, in biodegradable nanoparticles: factorial design, characterization and release kinetics. Eur J Pharm Biopharm 66(1):34–41.  https://doi.org/10.1016/J.EJPB.2006.09.004CrossRefPubMedGoogle Scholar
  54. Dev A, Binulal NS, Anitha A, Nair SV, Furuike T, Tamura H, Jayakumar R (2010) Preparation of poly(lactic acid)/chitosan nanoparticles for anti-HIV drug delivery applications. Carbohydr Polym 80(3):833–838.  https://doi.org/10.1016/J.CARBPOL.2009.12.040CrossRefGoogle Scholar
  55. Díaz M, Vivas-Mejia P (2013) Nanoparticles as drug delivery systems in cancer medicine: emphasis on RNAi-containing nanoliposomes. Pharmaceuticals 6(11):1361–1380.  https://doi.org/10.3390/ph6111361CrossRefPubMedGoogle Scholar
  56. Ds A, Mj S, Fletcher P, Holian A (2016) Nanotechnology: the risks and benefits for medical diagnosis and treatment.  https://doi.org/10.4172/2157-7439.1000e143CrossRefGoogle Scholar
  57. Du F, Meng H, Xu K, Xu Y, Luo P, Luo Y, Lu W, Huang J, Liu S, Yu J (2014) CPT loaded nanoparticles based on beta-cyclodextrin-grafted poly(ethylene glycol)/poly (l-glutamic acid) diblock copolymer and their inclusion complexes with CPT. Colloids Surf B: Biointerfaces 113:230–236.  https://doi.org/10.1016/j.colsurfb.2013.09.015CrossRefPubMedGoogle Scholar
  58. Elia P, Zach R, Hazan S, Kolusheva S, Porat Z, Zeiri Y (2014) Green synthesis of gold nanoparticles using plant extracts as reducing agents. Int J Nanomedicine 9:4007.  https://doi.org/10.2147/IJN.S57343CrossRefPubMedPubMedCentralGoogle Scholar
  59. Elsadek B, Kratz F (2012) Impact of albumin on drug delivery — new applications on the horizon. J Control Release 157(1):4–28.  https://doi.org/10.1016/j.jconrel.2011.09.069CrossRefPubMedGoogle Scholar
  60. Elzoghby AO, El-Fotoh WS, Elgindy NA (2011) Casein-based formulations as promising controlled release drug delivery systems. J Control Release 153(3):206–216.  https://doi.org/10.1016/j.jconrel.2011.02.010CrossRefPubMedGoogle Scholar
  61. Elzoghby AO, Samy WM, Elgindy NA (2012) Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release 157(2):168–182.  https://doi.org/10.1016/j.jconrel.2011.07.031CrossRefPubMedGoogle Scholar
  62. Fadel TR, Sharp FA, Vudattu N, Ragheb R, Garyu J, Kim D, Hong E, Li N, Haller GL, Pfefferle LD, Justesen S, Herold KC, Fahmy TM (2014) A carbon nanotube–polymer composite for T-cell therapy. Nat Nanotechnol 9(8):639–647.  https://doi.org/10.1038/nnano.2014.154CrossRefPubMedGoogle Scholar
  63. Fakhravar Z, Ebrahimnejad P, Daraee H, Akbarzadeh A (2016) Nanoliposomes: synthesis methods and applications in cosmetics. J Cosmet Laser Ther 18(3):174–181.  https://doi.org/10.3109/14764172.2015.1039040CrossRefPubMedGoogle Scholar
  64. Fakruddin M, Hossain Z, Afroz H (2012) Prospects and applications of nanobiotechnology: a medical perspective. J Nanobiotechnol 10(1):31.  https://doi.org/10.1186/1477-3155-10-31CrossRefGoogle Scholar
  65. Fan J, Sun Y, Wang S, Li Y, Zeng X, Cao Z, Yang P, Song P, Wang Z, Xian Z, Gao H, Chen Q, Cui D, Ju D (2016) Inhibition of autophagy overcomes the nanotoxicity elicited by cadmium-based quantum dots. Biomaterials 78:102–114.  https://doi.org/10.1016/J.BIOMATERIALS.2015.11.029CrossRefPubMedGoogle Scholar
  66. Feng ZG, Pang SF, Guo DJ, Yang YT, Liu B, Wang JW, Zheng KQ, Lin Y (2014) Recombinant keratinocyte growth factor 1 in tobacco potentially promotes wound healing in diabetic rats. Biomed Res Int 2014:1–9.  https://doi.org/10.1155/2014/579632CrossRefGoogle Scholar
  67. Firdhouse MJ, Lalitha P (2015) Biosynthesis of silver nanoparticles and its applications. J Nanotechnol 2015:1–18.  https://doi.org/10.1155/2015/829526CrossRefGoogle Scholar
  68. Fonseca C, Simoes S, Gaspar R (2002) Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. J Control Release 83(2):273–286.  https://doi.org/10.1016/S0168-3659(02)00212-2CrossRefPubMedGoogle Scholar
  69. Gao Y, Chen Y, Ji X, He X, Yin Q, Zhang Z, Shi J, Li Y (2011) Controlled intracellular release of doxorubicin in multidrug-resistant cancer cells by tuning the shell-pore sizes of mesoporous silica nanoparticles. ACS Nano 5(12):9788–9798.  https://doi.org/10.1021/nn2033105CrossRefPubMedGoogle Scholar
  70. Gathirwa JW, Omwoyo W, Ogutu B, Oloo F, Swai H, Kalombo L, Melariri P, Maroa G (2014) Preparation, characterization, and optimization of primaquine-loaded solid lipid nanoparticles. Int J Nanomedicine 9:3865.  https://doi.org/10.2147/IJN.S62630CrossRefPubMedPubMedCentralGoogle Scholar
  71. Gaudana R, Jwala J, Boddu SH, Mitra AK (2009) Recent perspectives in ocular drug delivery. Pharm Res 26(5):1197.  https://doi.org/10.1007/s11095-008-9694-0CrossRefPubMedGoogle Scholar
  72. George S, Lin S, Ji Z, Thomas CR, Li L, Mecklenburg M, Meng H, Wang X, Zhang H, Xia T, Hohman JN (2012) Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos. ACS Nano 6(5):3745–3759.  https://doi.org/10.1021/nn204671vCrossRefPubMedPubMedCentralGoogle Scholar
  73. Ghanbarzadeh S, Hariri R, Kouhsoltani M, Shokri J, Javadzadeh Y, Hamishehkar H (2015) Enhanced stability and dermal delivery of hydroquinone using solid lipid nanoparticles. Colloids Surf B: Biointerfaces 136:1004–1010.  https://doi.org/10.1016/J.COLSURFB.2015.10.041CrossRefPubMedGoogle Scholar
  74. Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60(11):1307–1315.  https://doi.org/10.1016/J.ADDR.2008.03.016CrossRefPubMedGoogle Scholar
  75. Gómez-Gaete C, Tsapis N, Besnard M, Bochot A, Fattal E (2007) Encapsulation of dexamethasone into biodegradable polymeric nanoparticles. Int J Pharm 331(2):153–159.  https://doi.org/10.1016/J.IJPHARM.2006.11.028CrossRefPubMedGoogle Scholar
  76. Gratieri T, Gelfuso GM, Lopez RF, Souto EB (2010) Current efforts and the potential of nanomedicine in treating fungal keratitis. Expert Rev Ophthalmol 5:365–384.  https://doi.org/10.1586/eop.10.19CrossRefGoogle Scholar
  77. Gulrez SK, Al-Assaf S, Philips GO (2011) Hydrogels: methods of preparation, characterisation and applications. In: Progress in molecular and environmental bioengineering – from analysis and modeling to technology applications. BoD–Books on Demand, Norderstedt.  https://doi.org/10.5772/24553CrossRefGoogle Scholar
  78. Guo C, Xia Y, Niu P, Jiang L, Duan J, Yu Y, Zhou X, Li Y, Sun Z (2015) Silica nanoparticles induce oxidative stress, inflammation, and endothelial dysfunction in vitro via activation of the MAPK/Nrf2 pathway and nuclear factor-kB signaling. Int J Nanomedicine 10:1463.  https://doi.org/10.2147/IJN.S76114CrossRefPubMedPubMedCentralGoogle Scholar
  79. Gurr JR, Wang AS, Chen CH, Jan KY (2005) Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213(1–2):66–73.  https://doi.org/10.1016/J.TOX.2005.05.007CrossRefPubMedGoogle Scholar
  80. Gutjahr A, Phelip C, Coolen AL, Monge C, Boisgard AS, Paul S, Verrier B (2016) Biodegradable polymeric nanoparticles-based vaccine adjuvants for lymph nodes targeting. Vaccine 4(4):34.  https://doi.org/10.3390/vaccines4040034CrossRefGoogle Scholar
  81. Haghiralsadat F, Amoabediny G, Sheikhha MH, Zandieh-doulabi B, Naderinezhad S, Helder MN, Forouzanfar T (2017) New liposomal doxorubicin nanoformulation for osteosarcoma: drug release kinetic study based on thermo and pH sensitivity. Chem Biol Drug Des 90(3):368–379.  https://doi.org/10.1111/cbdd.12953CrossRefPubMedGoogle Scholar
  82. Hainfeld JF, Slatkin DN, Smilowitz HM (2004) The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49(18):N309.  https://doi.org/10.1088/0031-9155/49/18/N03CrossRefPubMedGoogle Scholar
  83. Han G, Ghosh P, Rotello VM (2007) Multi-functional gold nanoparticles for drug delivery. Adv Exp Med Biol 620:48–56.  https://doi.org/10.1007/978-0-387-76713-0_4CrossRefPubMedGoogle Scholar
  84. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A 100(23):13549–13554.  https://doi.org/10.1073/pnas.2232479100CrossRefPubMedPubMedCentralGoogle Scholar
  85. Hoshino A, Hanada S, Yamamoto K (2011) Toxicity of nanocrystal quantum dots: the relevance of surface modifications. Arch Toxicol 85(7):707.  https://doi.org/10.1007/s00204-011-0695-0CrossRefPubMedGoogle Scholar
  86. Hsiao IL, Huang YJ (2011) Effects of various physicochemical characteristics on the toxicities of ZnO and TiO2 nanoparticles toward human lung epithelial cells. Sci Total Environ 409(7):1219–1228.  https://doi.org/10.1016/J.SCITOTENV.2010.12.033CrossRefPubMedGoogle Scholar
  87. Huang Z, Li X, Zhang T, Song Y, She Z, Li J, Deng Y (2014) Progress involving new techniques for liposome preparation. Asian J Pharm Sci 9(4):176–182.  https://doi.org/10.1016/J.AJPS.2014.06.001CrossRefGoogle Scholar
  88. Huang J, Li Y, Orza A, Lu Q, Guo P, Wang L, Yang L, Mao H (2016) Magnetic nanoparticle facilitated drug delivery for cancer therapy with targeted and image-guided approaches. Adv Funct Mater 26(22):3818–3836.  https://doi.org/10.1002/adfm.201504185CrossRefPubMedPubMedCentralGoogle Scholar
  89. Huang Y, Fan CQ, Dong H, Wang SM, Yang XC, Yang SM (2017) Current applications and future prospects of nanomaterials in tumor therapy. Int J Nanomedicine 12:1815.  https://doi.org/10.2147/IJN.S127349CrossRefPubMedPubMedCentralGoogle Scholar
  90. Hussain JI, Kumar S, Hashmi AA, Khan Z (2011) Silver nanoparticles: preparation, characterization, and kinetics. Adv Mater Lett 2(3):188–194.  https://doi.org/10.5185/amlett.2011.1206CrossRefGoogle Scholar
  91. Iohara D, Hirayama F, Higashi K, Yamamoto K, Uekama K (2011) Formation of stable hydrophilic C60 nanoparticles by 2-hydroxypropyl-β-cyclodextrin. Mol Pharm 8(4):1276–1284.  https://doi.org/10.1021/mp200204vCrossRefPubMedGoogle Scholar
  92. Jahromi MA, Zangabad PS, Basri SM, Zangabad KS, Ghamarypour A, Aref AR, Karimi M, Hamblin MR (2018) Nanomedicine and advanced technologies for burns: preventing infection and facilitating wound healing. Adv Drug Deliv Rev 123:33–64.  https://doi.org/10.1016/J.ADDR.2017.08.001CrossRefGoogle Scholar
  93. Jain SK, Gupta Y, Jain A, Saxena AR, Khare P, Jain A (2008) Mannosylated gelatin nanoparticles bearing an anti-HIV drug didanosine for site-specific delivery. Nanomedicine 4(1):41–48.  https://doi.org/10.1016/j.nano.2007.11.004CrossRefPubMedGoogle Scholar
  94. Jain AK, Das M, Swarnakar NK, Jain S (2011) Engineered PLGA nanoparticles: an emerging delivery tool in cancer therapeutics. Crit Rev Ther Drug Carrier Syst 28(1).  https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v28.i1.10CrossRefGoogle Scholar
  95. Jourghanian P, Ghaffari S, Ardjmand M, Haghighat S, Mohammadnejad M (2016) Sustained release curcumin loaded solid lipid nanoparticles. Adv Pharm Bull 6(1):17.  https://doi.org/10.15171/apb.2016.004CrossRefPubMedPubMedCentralGoogle Scholar
  96. Kajjari PB, Manjeshwar LS, Aminabhavi TM (2013) Novel blend microspheres of poly(vinyl alcohol) and succinyl chitosan for controlled release of nifedipine. Polym Bull 70(12):3387–3406.  https://doi.org/10.1007/s00289-013-1029-6CrossRefGoogle Scholar
  97. Kalepu S, Nekkanti V (2015) Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm Sin B 5(5):442–453.  https://doi.org/10.1016/J.APSB.2015.07.003CrossRefPubMedPubMedCentralGoogle Scholar
  98. Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S (2011) Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int J Pharm 420(1):1–10.  https://doi.org/10.1016/j.ijpharm.2011.08.032CrossRefPubMedGoogle Scholar
  99. Kedar U, Phutane P, Shidhaye S, Kadam V (2010) Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine 6(6):714–729.  https://doi.org/10.1016/j.nano.2010.05.005CrossRefPubMedGoogle Scholar
  100. Kim ST, Chompoosor A, Yeh YC, Agasti SS, Solfiell DJ, Rotello VM (2012) Dendronized gold nanoparticles for siRNA delivery. Small 8(21):3253–3256.  https://doi.org/10.1002/smll.201201141CrossRefPubMedPubMedCentralGoogle Scholar
  101. Kona S, Specht D, Rahimi M, Shah BP, Gilbertson TA, Nguyen KT (2012) Targeted biodegradable nanoparticles for drug delivery to smooth muscle cells. J Nanosci Nanotechnol 12(1):236–244.  https://doi.org/10.1166/jnn.2012.5131CrossRefPubMedGoogle Scholar
  102. Kong FY, Zhang JW, Li RF, Wang ZX, Wang WJ, Wang W (2017) Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules 22(9):1445.  https://doi.org/10.3390/molecules22091445CrossRefPubMedCentralGoogle Scholar
  103. Kostarelos K, Bianco A, Prato M (2009) Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat Nanotechnol 4(10):627.  https://doi.org/10.1038/nnano.2009.241CrossRefPubMedGoogle Scholar
  104. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359(6397):710.  https://doi.org/10.1038/359710a0CrossRefGoogle Scholar
  105. Kudr J, Haddad Y, Richtera L, Heger Z, Cernak M, Adam V, Zitka O (2017) Magnetic nanoparticles: from design and synthesis to real world applications. Nano 7(9):243.  https://doi.org/10.3390/nano7090243CrossRefGoogle Scholar
  106. Kumar R, Nagarwal RC, Dhanawat M, Pandit JK (2011) In-vitro and in-vivo study of indomethacin loaded gelatin nanoparticles. J Biomed Nanotechnol 7(3):325–333.  https://doi.org/10.1166/jbn.2011.1290CrossRefPubMedGoogle Scholar
  107. Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B: Biointerfaces 75(1):1–18.  https://doi.org/10.1016/J.COLSURFB.2009.09.001CrossRefPubMedGoogle Scholar
  108. Kuno N, Fujii S (2011) Recent advances in ocular drug delivery systems. Polymers 3(1):193–221.  https://doi.org/10.3390/polym3010193CrossRefGoogle Scholar
  109. Langer R, Peppas N (1983) Chemical and physical structure of polymers as carriers for controlled release of bioactive agents: a review. J Macromol Sci C 23(1):61–126.  https://doi.org/10.1080/07366578308079439CrossRefGoogle Scholar
  110. Lavasanifar A, Samuel J, Sattari S, Kwon GS (2002) Block copolymer micelles for the encapsulation and delivery of amphotericin B. Pharm Res 19(4):418–422.  https://doi.org/10.1023/A:1015127225021CrossRefPubMedGoogle Scholar
  111. Le Bourlais C, Acar L, Zia H, Sado PA, Needham T, Leverge R (1998) Ophthalmic drug delivery systems—recent advances. Prog Retin Eye Res 17(1):33–58.  https://doi.org/10.1016/S1350-9462(97)00002-5CrossRefPubMedGoogle Scholar
  112. Lee MK, Lim SJ, Kim CK (2007) Preparation, characterization and in vitro cytotoxicity of paclitaxel-loaded sterically stabilized solid lipid nanoparticles. Biomaterials 28(12):2137–2146.  https://doi.org/10.1016/J.BIOMATERIALS.2007.01.014CrossRefPubMedGoogle Scholar
  113. Li SD, Huang L (2010) Stealth nanoparticles: high density but sheddable PEG is a key for tumor targeting. J Control Release 145(3):178.  https://doi.org/10.1016/j.jconrel.2010.03.016CrossRefPubMedPubMedCentralGoogle Scholar
  114. Li D, Kaner RB (2005) Shape and aggregation control of nanoparticles: not shaken, not stirred. J Am Chem Soc 128(3):968–975.  https://doi.org/10.1021/JA056609NCrossRefGoogle Scholar
  115. Li C, Zhang Y, Wang M, Zhang Y, Chen G, Li L, Wu D, Wang Q (2014) In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window. Biomaterials 35(1):393–400.  https://doi.org/10.1016/J.BIOMATERIALS.2013.10.010CrossRefPubMedGoogle Scholar
  116. Lim EK, Jang E, Lee K, Haam S, Huh YM (2013a) Delivery of cancer therapeutics using nanotechnology. Pharmaceutics 5(2):294–317.  https://doi.org/10.3390/pharmaceutics5020294CrossRefPubMedPubMedCentralGoogle Scholar
  117. Lim J, Yeap S, Che H, Low S (2013b) Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Res Lett 8(1):381.  https://doi.org/10.1186/1556-276X-8-381CrossRefPubMedPubMedCentralGoogle Scholar
  118. Lin PC, Lin S, Wang PC, Sridhar R (2014) Techniques for physicochemical characterization of nanomaterials. Biotechnol Adv 32(4):711–726.  https://doi.org/10.1016/J.BIOTECHADV.2013.11.006CrossRefPubMedGoogle Scholar
  119. Liu Z, Chen K, Davis C, Sherlock S, Cao Q, Chen X, Dai H (2008) Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 68(16):6652–6660.  https://doi.org/10.1158/0008-5472.CAN-08-1468CrossRefPubMedPubMedCentralGoogle Scholar
  120. Logan R, Kong AC, Axcell E, Krise JP (2014) Amine-containing molecules and the induction of an expanded lysosomal volume phenotype: a structure–activity relationship study. J Pharm Sci 103(5):1572–1580.  https://doi.org/10.1002/jps.23949CrossRefPubMedGoogle Scholar
  121. Lomis N, Gaudreault F, Malhotra M, Westfall S, Shum-Tim D, Prakash S (2017) Novel milrinone nanoformulation for use in cardiovascular diseases: preparation and in vitro characterization. Mol Pharm 15(7):2489–2502.  https://doi.org/10.1021/acs.molpharmaceut.7b00360CrossRefGoogle Scholar
  122. Mahajan HS, Gattani S (2010) In situ gels of metoclopramide hydrochloride for intranasal delivery: in vitro evaluation and in vivo pharmacokinetic study in rabbits. Drug Deliv 17(1):19–27.  https://doi.org/10.3109/10717540903447194CrossRefPubMedGoogle Scholar
  123. Mahapatro A, Singh DK (2011) Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J Nanobiotechnol 9(1):55.  https://doi.org/10.1186/1477-3155-9-55CrossRefGoogle Scholar
  124. Malam Y, Loizidou M, Seifalian AM (2009) Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 30(11):592–599.  https://doi.org/10.1016/J.TIPS.2009.08.004CrossRefPubMedGoogle Scholar
  125. Martin CR (2006) Welcome to nanomedicine. Nanomedicine 1:5–5.  https://doi.org/10.2217/17435889.1.1.5CrossRefGoogle Scholar
  126. Matea CT, Mocan T, Tabaran F, Pop T, Mosteanu O, Puia C, Iancu C, Mocan L (2017) Quantum dots in imaging, drug delivery and sensor applications. Int J Nanomedicine 12:5421.  https://doi.org/10.2147/IJN.S138624CrossRefPubMedPubMedCentralGoogle Scholar
  127. Matsumine A, Kusuzaki K, Matsubara T, Shintani K, Satonaka H, Wakabayashi T, Miyazaki S, Morita K, Takegami K, Uchida A (2007) Novel hyperthermia for metastatic bone tumors with magnetic materials by generating an alternating electromagnetic field. Clin Exp Metastasis 24(3):191–200.  https://doi.org/10.1007/s10585-007-9068-8CrossRefPubMedGoogle Scholar
  128. Maynard AD (2014) Is novelty overrated? Nat Nanotechnol 9(6):409.  https://doi.org/10.1038/nnano.2014.116CrossRefPubMedGoogle Scholar
  129. Meng L, Zhang X, Lu Q, Fei Z, Dyson PJ (2012) Single walled carbon nanotubes as drug delivery vehicles: targeting doxorubicin to tumors. Biomaterials 33(6):1689–1698.  https://doi.org/10.1016/j.biomaterials.2011.11.004CrossRefPubMedGoogle Scholar
  130. Misak H, Zacharias N, Song Z, Hwang S, Man KP, Asmatulu R, Yang SY (2013) Skin cancer treatment by albumin/5-Fu loaded magnetic nanocomposite spheres in a mouse model. J Biotechnol 164(1):130–136.  https://doi.org/10.1016/J.JBIOTEC.2013.01.003CrossRefPubMedGoogle Scholar
  131. Mody VV, Siwale R, Singh A, Mody HR (2010) Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2(4):282–289.  https://doi.org/10.4103/0975-7406.72127CrossRefPubMedPubMedCentralGoogle Scholar
  132. Mofazzal Jahromi MA, Al-Musawi S, Pirestani M, Fasihi Ramandi M, Ahmadi K, Rajayi H, Mohammad Hassan Z, Kamali M, Mirnejad R (2014) Curcumin-loaded Chitosan Tripolyphosphate Nanoparticles as a safe, natural and effective antibiotic inhibits the infection of Staphylococcusaureus and Pseudomonas aeruginosa in vivo. Iran J Biotechnol 12(3):1–8.  https://doi.org/10.15171/ijb.1012CrossRefGoogle Scholar
  133. Moreno D, Zalba S, Navarro I, Tros de Ilarduya C, Garrido MJ (2010) Pharmacodynamics of cisplatin-loaded PLGA nanoparticles administered to tumor-bearing mice. Eur J Pharm Biopharm 74(2):265–274.  https://doi.org/10.1016/J.EJPB.2009.10.005CrossRefPubMedGoogle Scholar
  134. Movassaghian S, Merkel OM, Torchilin VP (2015) Applications of polymer micelles for imaging and drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7(5):691–707.  https://doi.org/10.1002/wnan.1332CrossRefPubMedGoogle Scholar
  135. Mukherjee S, Ray S, Thakur RS (2009) Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J Pharm Sci 71(4):349.  https://doi.org/10.4103/0250-474X.57282CrossRefPubMedPubMedCentralGoogle Scholar
  136. Nahar M, Mishra D, Dubey V, Jain NK (2008) Development, characterization, and toxicity evaluation of amphotericin B–loaded gelatin nanoparticles. Nanomedicine 4(3):252–261.  https://doi.org/10.1016/j.nano.2008.03.007CrossRefPubMedGoogle Scholar
  137. Nanjwade BK, Bechra HM, Derkar GK, Manvi FV, Nanjwade VK (2009) Dendrimers: emerging polymers for drug-delivery systems. Eur J Pharm Sci 38(3):185–196.  https://doi.org/10.1016/J.EJPS.2009.07.008CrossRefPubMedGoogle Scholar
  138. Nanjwade BK, Singh J, Parikh KA, Manvi FV (2010) Preparation and evaluation of carboplatin biodegradable polymeric nanoparticles. Int J Pharm 385(1–2):176–180.  https://doi.org/10.1016/J.IJPHARM.2009.10.030CrossRefPubMedGoogle Scholar
  139. Narvekar M, Xue HY, Eoh JY, Wong HL (2014) Nanocarrier for poorly water-soluble anticancer drugs—barriers of translation and solutions. AAPS PharmSciTech 15(4):822–833.  https://doi.org/10.1208/s12249-014-0107-xCrossRefPubMedPubMedCentralGoogle Scholar
  140. Nasrollahzadeh M (2014) Green synthesis and catalytic properties of palladium nanoparticles for the direct reductive amination of aldehydes and hydrogenation of unsaturated ketones. New J Chem 38(11):5544–5550.  https://doi.org/10.1039/C4NJ01440ECrossRefGoogle Scholar
  141. Naumov AA, Shatalin YV, Potselueva MM (2010) Effects of a nanocomplex containing antioxidant, lipid, and amino acid on thermal burn wound surface. Bull Exp Biol Med 149(1):62–66.  https://doi.org/10.1007/s10517-010-0876-5CrossRefPubMedGoogle Scholar
  142. Nel AE, Madler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater 8(7):543.  https://doi.org/10.1038/nmat2442CrossRefPubMedGoogle Scholar
  143. Nicolosi D, Cupri S, Genovese C, Tempera G, Mattina R, Pignatello R (2015) Nanotechnology approaches for antibacterial drug delivery: preparation and microbiological evaluation of fusogenic liposomes carrying fusidic acid. Int J Antimicrob Agents 45(6):622–626.  https://doi.org/10.1016/J.IJANTIMICAG.2015.01.016CrossRefPubMedGoogle Scholar
  144. Noriega-Luna B, Godinez LA, Rodriguez FJ, Rodriguez A, Larrea G, Sosa-Ferreyra CF, Mercado-Curiel RF, Manriquez J, Bustos E (2014) Applications of dendrimers in drug delivery agents, diagnosis, therapy, and detection. J Nanomater 2014:39.  https://doi.org/10.1155/2014/507273CrossRefGoogle Scholar
  145. Palmer B, DeLouise L, Palmer BC, DeLouise LA (2016) Nanoparticle-enabled transdermal drug delivery systems for enhanced dose control and tissue targeting. Molecules 21(12):1719.  https://doi.org/10.3390/molecules21121719CrossRefPubMedCentralGoogle Scholar
  146. Paques JP, van der Linden E, van Rijn CJ, Sagis LM (2014) Preparation methods of alginate nanoparticles. Adv Colloid Interf Sci 209:163–171.  https://doi.org/10.1016/J.CIS.2014.03.009CrossRefGoogle Scholar
  147. Pariser D (2009) Topical corticosteroids and topical calcineurin inhibitors in the treatment of atopic dermatitis: focus on percutaneous absorption. Am J Ther 16(3):264–273.  https://doi.org/10.1097/MJT.0b013e31818a975cCrossRefPubMedGoogle Scholar
  148. Park KH, Chhowalla M, Iqbal Z, Sesti F (2003) Single-walled carbon nanotubes are a new class of ion channel blockers. J Biol Chem 278(50):50212–50216.  https://doi.org/10.1074/jbc.M310216200CrossRefPubMedGoogle Scholar
  149. Park K, Jung GY, Kim MK, Park MS, Shin YK, Hwang JK, Yuk SH (2012) Triptorelin acetate-loaded poly(lactide-co-glycolide) (PLGA) microspheres for controlled drug delivery. Macromol Res 20(8):847–851.  https://doi.org/10.1007/s13233-012-0123-1CrossRefGoogle Scholar
  150. Park EJ, Lee GH, Shim HW, Kim JH, Cho MH, Kim DW (2014a) Comparison of toxicity of different nanorod-type TiO 2 polymorphs in vivo and in vitro. J Appl Toxicol 34(4):357–366.  https://doi.org/10.1002/jat.2932CrossRefPubMedGoogle Scholar
  151. Park EJ, Zahari NEM, Kang MS, jin Lee S, Lee K, Lee BS, Yoon C, Cho MH, Kim Y, Kim JH (2014b) Toxic response of HIPCO single-walled carbon nanotubes in mice and RAW264.7 macrophage cells. Toxicol Lett 229(1):167–177.  https://doi.org/10.1016/j.toxlet.2014.06.015CrossRefPubMedGoogle Scholar
  152. Pillai G (2014) Nanomedicines for cancer therapy: an update of fda approved and those under various stages of development. SOJ Pharm Pharm Sci 1(2):13.  https://doi.org/10.15226/2374-6866/1/2/00109CrossRefGoogle Scholar
  153. Plummer R, Wilson RH, Calvert H, Boddy AV, Griffin M, Sludden J, Tilby MJ, Eatock M, Pearson DG, Ottley CJ, Matsumura Y (2011) A Phase I clinical study of cisplatin-incorporated polymeric micelles (NC-6004) in patients with solid tumours. Br J Cancer 104(4):593.  https://doi.org/10.1038/bjc.2011.6CrossRefPubMedPubMedCentralGoogle Scholar
  154. Powers KW, Palazuelos M, Moudgil BM, Roberts SM (2007) Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 1(1):42–51.  https://doi.org/10.1080/17435390701314902CrossRefGoogle Scholar
  155. Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2(1):32.  https://doi.org/10.1186/2228-5326-2-32CrossRefGoogle Scholar
  156. Prete ACL, Maria DA, Dé bora Rodrigues G, Valduga CJ, Ibañez OCM, Maranhão RC (2006) Evaluation in melanoma-bearing mice of an etoposide derivative associated to a cholesterol-rich nanoemulsion. J Pharm Pharmacol 58(6):801–808.  https://doi.org/10.1211/jpp.58.6.0010CrossRefPubMedGoogle Scholar
  157. Prokop A, Davidson JM (2008) Nanovehicular intracellular delivery systems. J Pharm Sci 97(9):3518–3590.  https://doi.org/10.1002/JPS.21270CrossRefPubMedPubMedCentralGoogle Scholar
  158. Qian X, Peng XH, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie S (2008) In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 26(1):83.  https://doi.org/10.1038/nbt1377CrossRefPubMedGoogle Scholar
  159. Rampino A, Borgogna M, Blasi P, Bellich B, Cesaro A (2013) Chitosan nanoparticles: preparation, size evolution and stability. Int J Pharm 455(1–2):219–228.  https://doi.org/10.1016/J.IJPHARM.2013.07.034CrossRefPubMedGoogle Scholar
  160. Ray S, Banerjee S, Maiti S, Laha B, Barik S, Sa B, Bhattacharyya UK (2010) Novel interpenetrating network microspheres of xanthan gum–poly(vinyl alcohol) for the delivery of diclofenac sodium to the intestine—in vitro and in vivo evaluation. Drug Deliv 17(7):508–519.  https://doi.org/10.3109/10717544.2010.483256CrossRefPubMedGoogle Scholar
  161. Rizvi SAA, Saleh AM (2018) Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J 26:64–70.  https://doi.org/10.1016/J.JSPS.2017.10.012CrossRefPubMedGoogle Scholar
  162. Rizvi SB, Rouhi S, Taniguchi S, Yang SY, Green M, Keshtgar M, Seifalian AM (2014) Near-infrared quantum dots for HER2 localization and imaging of cancer cells. Int J Nanomedicine 9:1323–1337.  https://doi.org/10.2147/IJN.S51535CrossRefPubMedPubMedCentralGoogle Scholar
  163. Roa W, Xiong Y, Chen J, Yang X, Song K, Yang X, Kong B, Wilson J, Xing JZ (2012) Pharmacokinetic and toxicological evaluation of multi-functional thiol-6-fluoro-6-deoxy-d-glucose gold nanoparticles in vivo. Nanotechnology 23(37):375101.  https://doi.org/10.1088/0957-4484/23/37/375101CrossRefPubMedGoogle Scholar
  164. Saad M, Garbuzenko OB, Ber E, Chandna P, Khandare JJ, Pozharov VP, Minko T (2008) Receptor targeted polymers, dendrimers, liposomes: which nanocarrier is the most efficient for tumor-specific treatment and imaging? J Control Release 130(2):107–114.  https://doi.org/10.1016/j.jconrel.2008.05.024CrossRefPubMedPubMedCentralGoogle Scholar
  165. Sah E, Sah H (2015) Recent trends in preparation of poly(lactide- co -glycolide) nanoparticles by mixing polymeric organic solution with antisolvent. J Nanomater 16(1):61.  https://doi.org/10.1155/2015/794601CrossRefGoogle Scholar
  166. Sapsford KE, Tyner KM, Dair BJ, Deschamps JR, Medintz IL (2011) Analyzing nanomaterial bioconjugates: a review of current and emerging purification and characterization techniques. Anal Chem 83(12):4453–4488.  https://doi.org/10.1021/ac200853aCrossRefPubMedGoogle Scholar
  167. Savjani KT, Gajjar AK, Savjani JK (2012) Drug solubility: importance and enhancement techniques. ISRN Pharmaceutics 2012:1–10.  https://doi.org/10.5402/2012/195727CrossRefGoogle Scholar
  168. Sawant KK, Varia JK, Dodiya SS (2008) Cyclosporine a loaded solid lipid nanoparticles: optimization of formulation, process variable and characterization. Curr Drug Deliv 5(1):64–69.  https://doi.org/10.2174/156720108783331069CrossRefPubMedGoogle Scholar
  169. Schoellhammer CM, Blankschtein D, Langer R (2014) Skin permeabilization for transdermal drug delivery: recent advances and future prospects. Expert Opin Drug Deliv 11(3):393–407.  https://doi.org/10.1517/17425247.2014.875528CrossRefPubMedPubMedCentralGoogle Scholar
  170. Selvan ST, Tan TTY, Yi DK, Jana NR (2010) Functional and multifunctional nanoparticles for bioimaging and biosensing. Langmuir 26(14):11631–11641.  https://doi.org/10.1021/la903512mCrossRefPubMedGoogle Scholar
  171. Seyfoddin A, Shaw J, Al-Kassas R (2010) Solid lipid nanoparticles for ocular drug delivery. Drug Deliv 17(7):467–489.  https://doi.org/10.3109/10717544.2010.483257CrossRefPubMedGoogle Scholar
  172. Shaikh J, Ankola DD, Beniwal V, Singh D, Kumar MR (2009) Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci 37(3–4):223–230.  https://doi.org/10.1016/j.ejps.2009.02.019CrossRefPubMedGoogle Scholar
  173. Sharma A, Goyal AK, Rath G (2018) Recent advances in metal nanoparticles in cancer therapy. J Drug Target 26(8):617–632.  https://doi.org/10.1080/1061186X.2017.1400553CrossRefGoogle Scholar
  174. Sharpe LA, Daily AM, Horava SD, Peppas NA (2014) Therapeutic applications of hydrogels in oral drug delivery. Expert Opin Drug Deliv 11(6):901–915.  https://doi.org/10.1517/17425247.2014.902047CrossRefPubMedPubMedCentralGoogle Scholar
  175. Shen Y, Li Q, Tu J, Zhu J (2009) Synthesis and characterization of low molecular weight hyaluronic acid-based cationic micelles for efficient siRNA delivery. Carbohydr Polym 77(1):95–104.  https://doi.org/10.1016/J.CARBPOL.2008.12.010CrossRefGoogle Scholar
  176. Shi S, Zhang Z, Luo Z, Yu J, Liang R, Li X, Chen H (2015) Chitosan grafted methoxy poly(ethylene glycol)-poly(ε-caprolactone) nanosuspension for ocular delivery of hydrophobic diclofenac. Sci Rep 5:11337.  https://doi.org/10.1038/srep11337CrossRefPubMedPubMedCentralGoogle Scholar
  177. Siegel RA, Rathbone MJ (2012) Overview of controlled release mechanisms. In: Fundamentals and applications of controlled release drug delivery. Springer, Boston, pp 19–43.  https://doi.org/10.1007/978-1-4614-0881-9_2CrossRefGoogle Scholar
  178. Singh R, Lillard JW (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86(3):215–223.  https://doi.org/10.1016/j.yexmp.2008.12.004CrossRefPubMedPubMedCentralGoogle Scholar
  179. Son GH, Lee BJ, Cho CW (2017) Mechanisms of drug release from advanced drug formulations such as polymeric-based drug-delivery systems and lipid nanoparticles. J Pharm Investig 47(4):287–296.  https://doi.org/10.1007/s40005-017-0320-1CrossRefGoogle Scholar
  180. Sonaje K, Italia JL, Sharma G, Bhardwaj V, Tikoo K, Kumar MR (2007) Development of biodegradable nanoparticles for oral delivery of ellagic acid and evaluation of their antioxidant efficacy against cyclosporine a-induced nephrotoxicity in rats. Pharm Res 24(5):899–908.  https://doi.org/10.1007/s11095-006-9207-yCrossRefPubMedGoogle Scholar
  181. Stewart BW, Wild CP (2014) World cancer report. IARC Press, LyonGoogle Scholar
  182. Subedi RK, Kang KW, Choi HK (2009) Preparation and characterization of solid lipid nanoparticles loaded with doxorubicin. Eur J Pharm Sci 37(3–4):508–513.  https://doi.org/10.1016/J.EJPS.2009.04.008CrossRefPubMedGoogle Scholar
  183. Sun H, Zhang F, Wei H, Yang B (2013) The effects of composition and surface chemistry on the toxicity of quantum dots. J Mater Chem B 1(47):6485–6494.  https://doi.org/10.1039/c3tb21151gCrossRefGoogle Scholar
  184. Sutradhar KB, Amin ML (2014) Nanotechnology in cancer drug delivery and selective targeting. ISRN Nanotechnology 2014:1–12.  https://doi.org/10.1155/2014/939378CrossRefGoogle Scholar
  185. Svenson S, Wolfgang M, Hwang J, Ryan J, Eliasof S (2011) Preclinical to clinical development of the novel camptothecin nanopharmaceutical CRLX101. J Control Release 153(1):49–55.  https://doi.org/10.1016/J.JCONREL.2011.03.007CrossRefPubMedGoogle Scholar
  186. Tautzenberger A, Kovtun A, Ignatius A (2012) Nanoparticles and their potential for application in bone. Int J Nanomedicine 7:4545.  https://doi.org/10.2147/IJN.S34127CrossRefPubMedPubMedCentralGoogle Scholar
  187. Teixeira M, Alonso MJ, Pinto MM, Barbosa CM (2005) Development and characterization of PLGA nanospheres and nanocapsules containing xanthone and 3-methoxyxanthone. Eur J Pharm Biopharm 59(3):491–500.  https://doi.org/10.1016/J.EJPB.2004.09.002CrossRefPubMedGoogle Scholar
  188. Thomas J, Slone W, Linton S, Okel T, Corum L, Percival SL (2011) In vitro antimicrobial efficacy of a silver alginate dressing on burn wound isolates. J Wound Care 20(3):124–128.  https://doi.org/10.12968/jowc.2011.20.3.124CrossRefPubMedGoogle Scholar
  189. Tran NQ, Nguyen CK, Nguyen TP (2013) Dendrimer-based nanocarriers demonstrating a high efficiency for loading and releasing anticancer drugs against cancer cells in vitro and in vivo. Adv Nat Sci Nanosci Nanotechnol 4(4):045013.  https://doi.org/10.1088/2043-6262/4/4/045013CrossRefGoogle Scholar
  190. Tripathi A, Saraf S, Saraf S (2015) Carbon nanotropes: a contemporary paradigm in drug delivery. Materials 8(6):3068–3100.  https://doi.org/10.3390/ma8063068CrossRefPubMedCentralGoogle Scholar
  191. Tsuji JS, Maynard AD, Howard PC, James JT, Lam C, Warheit DB, Santamaria AB (2006) Research strategies for safety evaluation of nanomaterials, part IV: risk assessment of nanoparticles. Toxicol Sci 89(1):42–50.  https://doi.org/10.1093/toxsci/kfi339CrossRefPubMedGoogle Scholar
  192. Ulbrich K, Hola K, Subr V, Bakandritsos A, Tucek J, Zboril R (2016) Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem Rev 116(9):5338–5431.  https://doi.org/10.1021/acs.chemrev.5b00589CrossRefPubMedGoogle Scholar
  193. Vaibhav V, Vijayalakshmi U, Roopan SM (2015) Agricultural waste as a source for the production of silica nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 139:515–520.  https://doi.org/10.1016/J.SAA.2014.12.083CrossRefPubMedGoogle Scholar
  194. van Vlerken LE, Vyas TK, Amiji MM (2007) Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharm Res 24(8):1405–1414.  https://doi.org/10.1007/s11095-007-9284-6CrossRefPubMedGoogle Scholar
  195. Varshosaz J, Farzan M (2015) Nanoparticles for targeted delivery of therapeutics and small interfering RNAs in hepatocellular carcinoma. World J Gastroenterol 21(42):12022.  https://doi.org/10.3748/wjg.v21.i42.12022CrossRefPubMedPubMedCentralGoogle Scholar
  196. Vimala K, Varaprasad K, Sadiku R, Ramam K, Kanny K (2014) Development of novel protein–Ag nanocomposite for drug delivery and inactivation of bacterial applications. Int J Biol Macromol 63:75–82.  https://doi.org/10.1016/J.IJBIOMAC.2013.10.021CrossRefPubMedGoogle Scholar
  197. Wakaskar RR (2018) Brief overview of nanoparticulate therapy in cancer. J Drug Target 26(2):123–126.  https://doi.org/10.1080/1061186X.2017.1347175CrossRefPubMedGoogle Scholar
  198. Walter MN, Wright KT, Fuller HR, MacNeil S, Johnson WE (2010) Mesenchymal stem cell-conditioned medium accelerates skin wound healing: An in vitro study of fibroblast and keratinocyte scratch assays. Exp Cell Res 316(7):1271–1281.  https://doi.org/10.1016/J.YEXCR.2010.02.026CrossRefPubMedGoogle Scholar
  199. Wang JX, Fan YB, Gao Y, Hu QH, Wang TC (2009) TiO2 nanoparticles translocation and potential toxicological effect in rats after intraarticular injection. Biomaterials 30(27):4590–4600.  https://doi.org/10.1016/j.biomaterials.2009.05.008CrossRefPubMedGoogle Scholar
  200. Wang F, Wang YC, Dou S, Xiong MH, Sun TM, Wang J (2011) Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano 5(5):3679–3692.  https://doi.org/10.1021/nn200007zCrossRefPubMedGoogle Scholar
  201. Wang R, Billone PS, Mullett WM (2013) Nanomedicine in action: an overview of cancer nanomedicine on the market and in clinical trials. J Nanomater 2013:1.  https://doi.org/10.1155/2013/629681CrossRefGoogle Scholar
  202. Wang Y, Zhao Q, Han N, Bai L, Li J, Liu J, Che E, Hu L, Zhang Q, Jiang T, Wang S (2015) Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine 11(2):313–327.  https://doi.org/10.1016/J.NANO.2014.09.014CrossRefPubMedGoogle Scholar
  203. Watermann A, Brieger J (2017) Mesoporous silica nanoparticles as drug delivery vehicles in cancer. Nano 7(7):189.  https://doi.org/10.3390/nano7070189CrossRefGoogle Scholar
  204. Weissig V, Pettinger TK, Murdock N (2014) Nanopharmaceuticals (part 1): products on the market. Int J Nanomedicine 9:4357.  https://doi.org/10.2147/IJN.S46900CrossRefPubMedPubMedCentralGoogle Scholar
  205. Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H (2012) Nanoparticles as drug delivery systems. Pharmacol Rep 64(5):1020–1037.  https://doi.org/10.1016/S1734-1140(12)70901-5CrossRefPubMedGoogle Scholar
  206. Wilson B, Samanta MK, Santhi K, Kumar KS, Ramasamy M, Suresh B (2010) Chitosan nanoparticles as a new delivery system for the anti-Alzheimer drug tacrine. Nanomedicine 6(1):144–152.  https://doi.org/10.1016/j.nano.2009.04.001CrossRefPubMedGoogle Scholar
  207. Wu C, Ji P, Yu T, Liu Y, Jiang J, Xu J, Zhao Y, Hao Y, Qiu Y, Zhao W (2016) Naringenin-loaded solid lipid nanoparticles: preparation, controlled delivery, cellular uptake, and pulmonary pharmacokinetics. Drug Des Devel Ther 10:911.  https://doi.org/10.2147/DDDT.S97738CrossRefPubMedPubMedCentralGoogle Scholar
  208. Xiao L, Takada H, hui GX, Miwa N (2006) The water-soluble fullerene derivative ‘radical sponge®’ exerts cytoprotective action against UVA irradiation but not visible-light-catalyzed cytotoxicity in human skin keratinocytes. Bioorg Med Chem Lett 16:1590–1595.  https://doi.org/10.1016/J.BMCL.2005.12.011CrossRefPubMedGoogle Scholar
  209. Yamashita T, Yamashita K, Nabeshi H, Yoshikawa T, Yoshioka Y, Tsunoda SI, Tsutsumi Y (2012) Carbon Nanomaterials: efficacy and safety for Nanomedicine. Materials (Basel, Switzerland) 5:350–363.  https://doi.org/10.3390/ma5020350CrossRefGoogle Scholar
  210. Yang S, Liu C, Liu W, Yu H, Zheng H, Zhou W, Hu Y (2013) Preparation and characterization of nanoliposomes entrapping medium-chain fatty acids and vitamin C by lyophilization. Int J Mol Sci 14(10):19763–19773.  https://doi.org/10.3390/ijms141019763CrossRefPubMedPubMedCentralGoogle Scholar
  211. Yang X, Zhang W, Zhao Z, Li N, Mou Z, Sun D, Cai Y, Wang W, Lin Y (2017) Quercetin loading CdSe/ZnS nanoparticles as efficient antibacterial and anticancer materials. J Inorg Biochem 167:36–48.  https://doi.org/10.1016/J.JINORGBIO.2016.11.023CrossRefPubMedGoogle Scholar
  212. Yeh TK, Lu Z, Wientjes MG, Au JL (2005) Formulating paclitaxel in nanoparticles alters its disposition. Pharm Res 22(6):867–874.  https://doi.org/10.1007/s11095-005-4581-4CrossRefPubMedGoogle Scholar
  213. Yu Y, Duan J, Yu Y, Li Y, Liu X, Zhou X, Ho K, Tian L, Sun Z (2014) Silica nanoparticles induce autophagy and autophagic cell death in HepG2 cells triggered by reactive oxygen species. J Hazard Mater 270:176–186.  https://doi.org/10.1016/j.jhazmat.2014.01.028CrossRefPubMedGoogle Scholar
  214. Yuan X, Marcano DC, Shin CS, Hua X, Isenhart LC, Pflugfelder SC, Acharya G (2015) Ocular drug delivery nanowafer with enhanced therapeutic efficacy. ACS Nano 9(2):1749–1758.  https://doi.org/10.1021/nn506599fCrossRefPubMedGoogle Scholar
  215. Yüksel E, Karakecili A, Demirtas TT, Gumusderelioglu M (2016) Preparation of bioactive and antimicrobial PLGA membranes by magainin II/EGF functionalization. Int J Biol Macromol 86:162–168.  https://doi.org/10.1016/J.IJBIOMAC.2016.01.061CrossRefPubMedGoogle Scholar
  216. Zhang XQ, Xu X, Bertrand N, Pridgen E, Swami A, Farokhzad OC (2012) Interactions of nanomaterials and biological systems: implications to personalized nanomedicine. Adv Drug Deliv Rev 64(13):1363–1384.  https://doi.org/10.1016/j.addr.2012.08.005CrossRefPubMedPubMedCentralGoogle Scholar
  217. Zhang J, Li S, An FF, Liu J, Jin S, Zhang JC, Wang PC, Zhang X, Lee CS, Liang XJ (2015) Self-carried curcumin nanoparticles for in vitro and in vivo cancer therapy with real-time monitoring of drug release. Nanoscale 7(32):13503–13510.  https://doi.org/10.1039/C5NR03259HCrossRefPubMedPubMedCentralGoogle Scholar
  218. Zulfiqar U, Subhani T, Husain SW (2016) Synthesis and characterization of silica nanoparticles from clay. J Asian Ceramic Soc 4(1):91–96.  https://doi.org/10.1016/J.JASCER.2015.12.001CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Molecular Bioprospection Department of Biotechnology DivisionCSIR-Central Institute of Medicinal and Aromatic PlantsLucknowIndia
  2. 2.Academy of Scientific & Innovative Research (AcSIR)GhaziabadIndia

Personalised recommendations