The Biotechnology of Turmeric

  • Kodoth Prabhakaran Nair


The biotechnology of turmeric: The chapter would specifically deal with tissue culture, callus induction, in vitro screening, exchange of turmeric germplasm, and in vitro conservation. There would also be a discussion on cryopreservation. Additionally, there would be a discussion on molecular markers, checking adulteration and purity assessment.


Biotechnology Conservation In vitro In vivo Molecular markers 


  1. Adelberg, J., & Cousins, M. (2006). Thin film of liquid media for heteromorphic growth and storage organ development: Turmeric (Curcuma longa) as a model plant. Horticultural Science, 41, 539–542.Google Scholar
  2. Ali, A., Munawer, A., & Siddiqui, F. A. (2004). In vitro propagation of turmeric (Curcuma longa L.). International Journal of Biology and Biotechnology, 1, 511–518.Google Scholar
  3. Angel, G. R., Makeshkumar, T., Mohan, C., Vimala, B., & Nambisan, B. (2008). Genetic diversity analysis of starchy Curcuma species using RAPD markers. Journal of Plant Biochemistry and Biotechnology, 17(2), 173–176.CrossRefGoogle Scholar
  4. Anuradha, A., Mahalakshmi, C., & Tyagi, R. K. (2008). Use of commercial sugar, isabgol and ordinary water in culture medium for conservation of Curcuma longa L. Journal of Plant Biochemistry and Biotechnology, 17, 85–89.CrossRefGoogle Scholar
  5. Balachandran, S. M., Bhat, S. R., & Chandel, K. P. S. (1990). In vitro multiplication of turmeric (Curcuma sp.) and ginger (Zingiber officinale Rosc.). Plant Cell Reports, 8, 521–524.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Cao, H., Sasaki, Y., Fushii, H., & Komatsu, K. (2001). Molecular analysis of medicinally used Chinese and Japanese Curcuma based on 18S rRNA and trnK gene sequences. Biological & Pharmaceutical Bulletin, 24, 1389–1394.CrossRefGoogle Scholar
  7. Cao, H., Komatsu, K., Xue, Y., & Bao, X. (2003). Molecular identification of six medicinal Curcuma plants produced in Sichuan: Evidence from plastid trnK gene sequences. Biological & Pharmaceutical Bulletin, 11, 871–875.Google Scholar
  8. Chang, L. K., & Thong, W. H. (2004). In vitro propagation of Zingiberaceae species with medicinal properties. Journal of Plant Biotechnology, 6, 181–188.Google Scholar
  9. Cousins, M. M., & Adelberg, W. J. (2008). Short-term and long-term time course studies in turmeric (Curcuma longa L.) microrhizome development. In Vitro Plant Cell, Tissue and Organ Culture, 93, 283–293.CrossRefGoogle Scholar
  10. Gayatri, M. C., Roopadarshini, V., & Kavyashree, R. (2005). Selection of turmeric callus tolerant to culture filtrates of Pythium graminicolum and regeneration plants. Plant Tissue and Organ Culture, 83, 33–40.CrossRefGoogle Scholar
  11. Gayatri, M. C., Roopadarshini, V., & Kavyashree, R. (2006). In A. Kumar (Ed.), Indirect organogenesis through pseudostem callus in turmeric variety Suguna of Curcuma longa L. concepts in tropical agriculture (pp. 28–35). New Delhi: Daya Publishers.Google Scholar
  12. Geetha, S. P. (2002). In vitro technology for genetic conservation of some genera of Zingiberaceae. PhD thesis, Calicut University, Calicut, Kerala State, India, pp. 325.Google Scholar
  13. Geetha, S. P., Manjula, C., & Sajina, A. (1995). In vitro conservation of genetic resources of spices. In: Proceedings of the seventh Kerala science congress, 27–29 January, Palakkad, Kerala State, India, pp. 12–16.Google Scholar
  14. Islam, K., Kloppstech, M. A., & Jacobsen, H. J. (2004). Efficient procedure for in vitro microrhizome induction in Curcuma longa L. (Zingiberaceae)—a medicinal plant of tropical Asia. Plant Tissue Culture, 14, 123–134.Google Scholar
  15. Keshavchandran, E., & Khader, M. A. (1989). Tissue culture propagation of turmeric. Indian Horticulture, 37, 101–102.Google Scholar
  16. Komatsu, K., & Cao, H. (2003). Molecular identification of six medicinal Curcuma plants produced in Sichuan: Evidence from plastid trnK gene sequences. Acta Pharmaceutica Sinica, 38, 871–875.PubMedGoogle Scholar
  17. Kress, W. J., Prince, L. M., & Williams, K. J. (2002). The phylogeny and a new classification of the gingers (Zingiberaceae): Evidence from molecular data. American Journal of Botany, 89, 1682–1696.CrossRefGoogle Scholar
  18. Ma, X., & Gang, D. R. (2006). Metabolic profiling of turmeric (Curcuma longa L.). plants derived from in vitro micropropagation and conventional greenhouse cultivation. Journal of Agricultural and Food Chemistry, 54, 9573–9583.PubMedCrossRefGoogle Scholar
  19. Meenakshi, N., Suliker, G. S., Krishnamoorthy, V., & Hegde, R. V. (2001). Standardization of chemical environment for multiple shoot induction of turmeric (Curcuma longa L.) for in vitro clonal propagation. Crop Research, 22, 449–453.Google Scholar
  20. Minami, M., Nishio, K., Ajioka, Y., Kyushima, H., Shigeki, K., Kinjo, K., et al. (2009). Identification of Curcuma plants and curcumin content level by DNA polymorphisms in the trn S-trn fM intergenic spacer in chloroplast DNA. Journal of Natural Medicines, 63, 75–79.PubMedCrossRefGoogle Scholar
  21. Mukhri, Z., & Yamaguchi, H. (1986). In vitro plant multiplication from rhizomes of turmeric (Curcuma domestica Val.) and Temeo Lawak (C. xanthorhiza Rodb.). Plant Tissue Culture Letters, 3, 28–30.CrossRefGoogle Scholar
  22. Nadgauda, R. S., & Masacarenhas, A. F. (1986). A method for screening high curcumin-containing turmeric (Curcuma longa L.) cultivars in vitro. Journal of Plant Physiology, 124, 359–364.CrossRefGoogle Scholar
  23. Nadgauda, R. S., Mascarenhas, A. F., Hendre, R. R., & Jagannathan, V. (1978). Rapid multiplication of turmeric (C. longa) plants by tissue culture. Indian Journal of Experimental Biology, 16, 120–122.Google Scholar
  24. Nasirujjaman, K., Uddin, M. S., Zaman, S., & Reza, M. A. (2005). Micropropagation of turmeric (Curcuma longa Linn.) through in vitro rhizome bud culture. Journal of Biological Sciences, 5, 490–492.CrossRefGoogle Scholar
  25. Nayak, S., & Naik, P. K. (2006). Factors affecting In Vitro microrhizome formation and growth in Curcuma longa L. and improved field performance of micropropagated. Asian Journal of Plant Sciences, 32, 31–37.Google Scholar
  26. Nayak, S., Naik, P. K., Acharya, L. K., & Patnaik, A. K. (2006). Detection and evaluation of genetic variation in 17 promising cultivars of turmeric (Curcuma longa L.) using 4C nuclear DNA content and RAPD markers. Cytologia, 71, 49–55.CrossRefGoogle Scholar
  27. Ngamriabsakul, C., Newman, M. F., & Cronck, Q. C. B. (2003). The phylogeny of tribe Zingberaceae (Zingiberaceae) based on its (nr DNA) and trnl-f (cpDNA) sequences. Edinburgh Journal of Botany, 60, 483–507.CrossRefGoogle Scholar
  28. Nirmal Babu, K., Sasikumar, B., Ratnambal, M. J., George, K. J., & Ravindran, P. N. (1993). Genetic variability in turmeric (Curcuma longa L.). Journal of Genetics and Plant Breeding, 53(1), 91–93.Google Scholar
  29. Nirmal Babu, K., Rema, J., & Ravindran, P. N. (1994). Biotechnology research in spice crops. In K. L. Chadha & P. Rethinam (Eds.), Advances in horticulture plantation and spice crops vol. 9 (Part I) (pp. 635–653). New Delhi: Malhotra Publishing House.Google Scholar
  30. Nirmal Babu, K., Samsudeen, K., & Raveendran, P. N. (1996). Biotechnological approaches to crop improvement in ginger, Zingiber officinale Rosc. In G. A. Ravishankar & L. V. Venkataraman (Eds.), Recent advances in biotechnological applications of plant tissue and cell culture (pp. 321–332). New Delhi: IBH Publishing Co.Google Scholar
  31. Nirmal Babu, K., Ravindran, P. N., & Peter, K. V. (1997). Protocols for micropropagation of spices and aromatic crops (p. 35). Calicut: Indian Institute of Spices Research.Google Scholar
  32. Nirmal Babu, K., Geetha, S. P., Minoo, D., Ravindran, P. N., & Peter, K. V. (1999). In vitro conservation of germplasm. In S. P. Ghosh (Ed.), Biotechnology and its application in horticulture (pp. 106–129). New Delhi: Narosa Publishing House.Google Scholar
  33. Nirmal Babu, K., Ravindran, P. N., & Sasikumar, B. (2003). Field evaluation of tissue cultured plants of spices and assessment of their genetic stability using molecular markers (pp. 94). Final report submitted to the Department of Biotechnology, Government of India, New Delhi.Google Scholar
  34. Panda, M. K., Sujata, M., Enketeswar, S., Laxmikanta, A., & Saghamitra, N. (2007). Assessment of genetic stability of micropropagated plants of Curcuma longa by cytophotometry and RAPD analyses. International Journal of Integrative Biology, 1, 189–195.Google Scholar
  35. Peter, K. V., Ravindran, P. N., Nirmal Babu, K., Sasikumar, B., Minoo, D., Geetha, S. P., et al., (2002). Establishing In Vitro conservatory of spices germplasm (ICAR project report, pp. 131). Calicut: Indian Institute of Spices Research.Google Scholar
  36. Pimchai, A., Somboon, A. I., Puangpen, S., & Chiara, S. (1999). Molecular markers in the identification of some early flowering Curcuma L. (Zingiberaceae) species. Annals of Botany, 84, 529–534.CrossRefGoogle Scholar
  37. Prathanturarug, S., Soornthornchareonnon, N., Chuakul, W., Phidee, Y., & Saralamp, P. (2003). High frequency shoot multiplication in Curcuma longa L using thidiazuron. Plant Cell Reports, 21, 1054–1059.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Prathanturarug, S., Soornthornchareonnon, N., Chuakul, W., Phaidee, Y., & Sarakamp, P. (2005). Rapid micropropagation of Curcuma longa using bud explants pre-cultured in thidiazuron- supplemented liquid medium. Plant Cell, Tissue and Organ Culture, 80, 347–351.CrossRefGoogle Scholar
  39. Praveen, K. (2005). Variability in somaclones of turmeric (C.longa L.). PhD thesis, Indian Institute of Spices Research, Calicut University, Calicut, Kerala State, India, pp. 131.Google Scholar
  40. Rahman, M. M., Amin, M. M., Jahan, H. S., & Ahemed, R. (2004). In vitro regeneration of plant- lets of Curcuma longa L., a valuable spice plant in Bangladesh. Asian Journal of Plant Science, 3, 306–309.CrossRefGoogle Scholar
  41. Rajan, V. R. (1997). Micropropagation of turmeric (Curcuma longa L.) by in vitro microrhizome. In S. Edison, K. V. Ramana, B. Sasikumar, K. N. Babu, & S. J. Eapen (Eds.), Biotechnology of spices medicinal and aromatic plants (pp. 25–28). Calicut: Indian Society of Spices.Google Scholar
  42. Remya, R., Syamkumar, S., & Sasikumar, B. (2004). Isolation and amplification of DNA from turmeric powder. British Food Journal, 106, 673–678.CrossRefGoogle Scholar
  43. Renjith, D., & Valsala, P. A. (2007). Optimisation of media components for seed development in turmeric after in vitro pollination. In R. Keshavachandran (Ed.), Recent trends in horticultural biotechnology (pp. 451–455). New Delhi: New India Publishing Agency.Google Scholar
  44. Roy, S., & Ray Chaudhuri, S. S. (2004). In vitro regeneration and estimation of curcumin content in four species of Curcuma. Plant Biotechnology, 21, 299–302.CrossRefGoogle Scholar
  45. Sajina, A., Minoo, D., Geetha, S. P., Samsudeen, K., Rema, J., Babu, K. N., et al. (1996). Production of synthetic seeds in spices crops. In S. Edison, K. V. Ramana, B. Sasikumar, K. N. Babu, & S. J. Eapen (Eds.), Proceedings national seminar on biotechnology of spices, medicinal and aromatic plants (pp. 65–69). Kozhikode: Indian Institute of Spices Research.Google Scholar
  46. Salvi, N. D., George, L., & Eapen, S. (2000). Direct regeneration of shoots from immature inflorescence cultures of turmeric. Plant Cell, Tissue and Organ Culture, 62, 235–238.CrossRefGoogle Scholar
  47. Salvi, N. D., George, L., & Eapen, S. (2001). Plant regeneration from leaf base callus of turmeric and random amplified polymorphic DNA analysis of regenerated plants. Plant Cell, Tissue and Organ Culture, 66, 113–119.CrossRefGoogle Scholar
  48. Salvi, N. D., George, L., & Eapen, S. (2002). Micropropagation and field evaluation of micropropagated plants of turmeric. Plant Cell, Tissue and Organ Culture, 68, 143–151.CrossRefGoogle Scholar
  49. Salvi, N. D., Geoge, L., & Eapen, S. (2003). Biotechnological studies of turmeric (C. longa L.) and ginger (Z. officinale Rosc.). Advances in agricultural biotechnology, 11, 32.Google Scholar
  50. Sasaki, Y., Fushimi, H., Cao, H., Cai, S. Q., & Komatsu, K. (2002). Sequence analysis of Chinese and Japanese Curcuma drugs on the 18S rRNA gene and trnK gene and the application of amplification-refractory mutation system analysis for their authentication. Biological & Pharmaceutical Bulletin, 25, 1593–1599.CrossRefGoogle Scholar
  51. Sasaki, Y., Fushimi, H., & Komatsu, K. (2004). Application of single-nucleotide polymorphism analysis of the trnK gene to the identification of Curcuma plants. Biological & Pharmaceutical Bulletin, 27, 144–146.CrossRefGoogle Scholar
  52. Sasikumar, B. (2005). Genetic resources of Curcuma: Diversity, characterization and utilisation. Plant Genetic Resources, 3, 230–251.CrossRefGoogle Scholar
  53. Sasikumar, B., Syamkumar, S., Remya, R., & Zacharia, T. J. (2004). PCR-based detection of adulteration in the market samples of turmeric powder. Food Biotechnology, 18, 299–306.CrossRefGoogle Scholar
  54. Shamina, A., Zachariah, T. J., Sasikumar, B., & George, J. K. (1998). Biochemical variation in turmeric based on isozyme polymorphism. The Journal of Horticultural Science and Biotechnology, 73, 477–483.CrossRefGoogle Scholar
  55. Shetty, M. S. K., Hariharan, P., & Iyer, R. D. (1982). Tissue culture studies in turmeric. In N. M. Nair, T. Prem Kumar, P. N. Ravindran, & Y. R. Sharma (Eds.), Proceedings national seminar on ginger and turmeric (pp. 39–41). Calicut: India CPCRI.Google Scholar
  56. Shirgurkar, M. V., John, C. K., & Nadgauda, R. S. (2001). Factors affecting in vitro micro-rhizome production in turmeric. Plant Cell, Tissue and Organ Culture, 64, 5–11.CrossRefGoogle Scholar
  57. Shirgurkar, M., Naik, B. V., von Arnold, S., Nadgauda, R. S., & David, C. (2006). An efficient pro- tocol for genetic transformation and shoot regeneration of turmeric (Curcuma longa) via particle bombardment. Plant Cell Reports, 5, 112–116.CrossRefGoogle Scholar
  58. Siju, S., Dhanya, K., Syamkumar, S., Sasikumar, B., Sheeja, T. E., Bhat, A. I., et al. (2009). Development, characterization and cross species amplification of polymorphic microsatellite markers from expressed sequence tags of turmeric (Curcuma longa L.). Molecular Biotechnology, 44(2), 140–147. Scholar
  59. Sit, A. K., & Tiwari, R. S. (1996). Micropropagation in turmeric (C. longa). Souvenir national symposium of horticulture and biotechnology, Bangalore, pp. 23.Google Scholar
  60. Sreeja, S. G. (2002). Molecular chracterization of Curcuma species using RAPD markers. M.Sc. (Biotech) thesis, Periyar University, Tamil Nadu, pp. 20.Google Scholar
  61. Sumathi, V. (2007). Studies on somaclonal variation in Zingiberaceous crops. PhD thesis, University of Calicut, Calicut, Kerala State, pp. 227.Google Scholar
  62. Sunitabala, H., Damayanti, M., & Sharma, G. (2001). In vitro propagation and rhizome formation in Curcuma longa Linn. Cytobios, 105, 71–82.Google Scholar
  63. Syamkumar, S. (2007). Molecular, biochemical and morphological characterization of selected Curcuma accessions. PhD thesis, University of Calicut, Calicut, Kerala State, pp. 311.Google Scholar
  64. Syamkumar, S., & Sasikumar, B. (2007). Molecular marker based on genetic diversity analysis of Curcuma species from India. Scientia Horticulturae, 112, 224–235.CrossRefGoogle Scholar
  65. Syamkumar, S., Lawrence, B., & Sasikumar, B. (2003). Isolation and amplification of DNA from rhizomes of turmeric and ginger. Plant Molecular Biology Reporter, 21, 171a–171e.CrossRefGoogle Scholar
  66. Tule, D., Ghorade, R. B., Mehatre, S., Pawar, B. V., & Shinde, E. (2005). Rapid multiplication of turmeric by micropropagation. Annual Plant Physiology, 19, 35–37.Google Scholar
  67. Tyagi, R. K., Bhat, S. R., & Chandel, K. P. S. (1998). In vitro conservation strategies of spices crop germplasm—Zingiber, Curcuma and Piper spices. In N. M. Mathew, C. Jacob Kuruvilla, J. Licy, T. Joseph, J. R. Meenattoor, & K. K. Thomas (Eds.), Developments in plantation crops research. Proceedings twelfth symposium on plantation crops (pp. 72–82). New Delhi: Allied Publishers.Google Scholar
  68. Tyagi, R. K., Agrawal, A., Mahalakshmi, C., Hussain, Z., & Tyagi, H. (2007). Low-cost media for in vitro conservation of turmeric (Curcuma longa L.) and genetic stability assessment using RAPD markers. In Vitro Cellular & Developmental Biology. Plant, 43, 51–58.CrossRefGoogle Scholar
  69. Vijayasree, P. S., & Valsala, P. A. (2007). Micropropagation supports heterosis breeding in turmeric (Curcuma longa Val.). In R. Keshavachandran (Ed.), Recent trends in horticultural biotechnology (pp. 421–424). New Delhi: New India Publishing Agency.Google Scholar
  70. Winnaar, E. d. (1989). Turmeric successfully established in tissue culture. Information Bulletin of the Citrus and Subtropical Fruit Research Institute, 199, 1–2.Google Scholar
  71. Xia, Q., Zhao, K. J., Huang, Z. G., Dong, T. T., Li, S. P., & Tsim, K. W. (2005). Molecular genet- ics and chemical assessment of Rhizoma curcumae in China. Journal of Agricultural and Food Chemistry, 53, 6019–6026.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Yasuda, K., Tsuda, T., Shimizu, H., & Sugaya, A. (1988). Multiplication of Curcuma species by tissue culture. Planta Medica, 54, 75–79.PubMedCrossRefPubMedCentralGoogle Scholar
  73. Zapata, E. V., Morales, G. S., Lauzardo, A. N. H., Bonfil, B. M., Tapia, G. T., Sanches, A. J., et al. (2003). In vitro regeneration and acclimatization of plants of turmeric (Curcuma longa) in a hydroponic system. Biotechnology and Applied Biochemistry, 31, 20–25.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kodoth Prabhakaran Nair
    • 1
  1. 1.International Agricultural ScientistCalicutIndia

Personalised recommendations