The Chemistry of Ginger

  • Kodoth Prabhakaran Nair


The chemistry of ginger: The chapter discusses elaborately the composition of ginger rhizome; extraction, separation, and identification methods; and analytical and isolation methodology, such as liquid column chromatography, thin-layer chromatography, high-performance liquid chromatography, gas chromatography, and other GC (Cas chromatography) methods, such as dynamic headspace, GC artifacts, gas chromatography/mass spectrometry coupling, selected ion monitoring technique, chemical ionization technique, and other miscellaneous methods. Additionally, there is a discussion on oleoresins, such as gingerols, shogaols, and related compounds. Further discussion centers on synthesis and biosynthesis of pungent compounds of ginger rhizomes, including essential oils of ginger, and their physicochemical properties and chemical composition. There is a separate discussion of essential oils from India, China, and other Southeast Asian countries, including Japan. Also, there is a discussion on essential oil in ginger grown in countries such as Africa (Nigeria), Australia, Brazil, Poland, Mauritius, and Tahiti. Additionally, there is a discussion on essential oils in wild ginger. Further discussion centers on characteristic flavor and odor in ginger, chromometrics, synthesis of some authentic samples, and precursors of aroma and flavoring compounds. The last part of the chapter will dwell on properties of ginger, ginger processing like deterpenation, preservation and encapsulation, irradiation effects, and formulations and uses of ginger.


Ginger Chemistry Chromatography Oleoresins Shogaols Essential oils Encapsulation Irradiation 


  1. Achinewhu, S. C., Ogbonna, C. C., & Hart, A. D. (1995). Chemical composition of indigenous wild herbs, spices, fruits, nuts and leafy vegetables used as foods. Plant Foods for Human Nutrition, 48(4), 341–348. Dordrecht.Google Scholar
  2. Afzal, M., Al-Hadidi Menon, M., Pesek, J., & Dhami, M. S. (2001). Zinger: An ethno-medical, chemical and pharmacological review. Drug Metabolism and Drug Interactions, 18(3–4), 159–190.PubMedPubMedCentralGoogle Scholar
  3. Agarwal, M., Walia, S., Dhingra, S., & Khambay, B. P. S. (2001). Insect growth, inhibition, anti-feedant and antifungal activity of compounds isolated/derived from Zingiber officinale roscoe (ginger) rhizomes. Pest Management Science, 57(3), 289–300.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Ahmad, N., Katiyar, S. K., & Mukhtar, H. (2001). Antioxidants in chemoprevention of the skin cancer. Current Problems in Dermatology, 29, 128–139.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Ahn, B., Lee, D. H., Yeo, S. G., Kany, J. H., Do, J. R., Kim, S. B., et al. (1993). Inhibitory action of natural food components on the formation of carcinogenic nitrosomine. Bulletin of the Korean Fisheries Society, 26, 289–295.Google Scholar
  6. Akhila, A., & Tewari, P. (1984). Chemistry of ginger: A review. Current Research on Medicinal and Aromatic Plants, 6(3), 143–156.Google Scholar
  7. Alencar, J. W., Craveiro, A. A., & Matos, F. J. A. (1984). Kovats indices as a preselection routine in mass spectra library searches of volatiles. Journal of Natural Products, 47(3), 890–892.CrossRefGoogle Scholar
  8. Altman, R. D., & Marcussen, K. C. (2001). Effects of a ginger extract on knee pain in patients with osteoarthritis. Arthritis & Rhematology, 44(11), 2531–2538.CrossRefGoogle Scholar
  9. Anderson, N. H., & Falcone, M. S. (1969). The identification of sesquiterpene hydrocarbons from GC retention data. Journal of Chromatography, 44, 52–59.CrossRefGoogle Scholar
  10. Andrews, I. S., Cadwallader, K. R., Grodner, R. M., & Chung, H. V. (1995). Chemical and microbial quality of irradiated ground ginger. Journal of Food Science, 60(4), 829–832.CrossRefGoogle Scholar
  11. Anzaldo, F. E., Coronel Violera, Q., Manalo, J. B., & Nuevo, C. R. (1986). Chemical components of local (Philippines) ginger oil. The National Institute of Science and Technology, 11(3), 11–19.Google Scholar
  12. Arimura, C. T., Finger, F. L., Casali, V., & W.D. (2000). Effect of NAA and BAP on ginger (Zingiber officinale roscoe) sprouting in solid and liquid medium. The Revista Brasileira de Plantas Medicinais, 2(2), 23–26.Google Scholar
  13. Association of Official Analytical Chemists (AOAC). (1984). Methods of analysis (14th ed.). Arlington: Association of Official Analytical Chemists.Google Scholar
  14. Badalyan, A. G., Wilkinson, G. T., & Chun, B. S. (1998). Extraction of Australian ginger root with carbon dioxide and ethanol entrainer. Journal of Supercritical Fluids, 13(1–3), 319–324.CrossRefGoogle Scholar
  15. Balladin, D. A., & Headley, O. (1999). Liquid chromatographic analysis of the main pungent prin- ciples of solar dried west Indian ginger (Zingiber officinale roscoe.). Renewable Energy, 18(2), 257–261.CrossRefGoogle Scholar
  16. Bartley, J. P. (1995). A new method for the determination of pungent compounds in ginger (Zingiber officinale roscoe). Journal of the Science of Food and Agriculture, 68, 215–222.CrossRefGoogle Scholar
  17. Bartley, J. P., & Jacobs, A. L. (2000). Effects of drying on flavor compounds in Australian-grown ginger (Zingiber officinale). Journal of the Science of Food and Agriculture, 80(2), 209–215.CrossRefGoogle Scholar
  18. Bednarczyk, A. A. (1974). Identification and evaluation of the flavor-significant components of ginger essential oil. Dissertation Abstracts International B, 35(1), 306.Google Scholar
  19. Bednarczyk, A. A., & Kramer, A. (1975). Identification and evaluation of the flavor-significant components of ginger essential oil. Chemical Senses, 1(4), 377–386.CrossRefGoogle Scholar
  20. Bhattarai, S., Tran Van, H., & Duke, C. C. (2001). The stability of gingerol and shogaol in aqueous solutions. Journal of Pharmaceutical Sciences, 80(10), 1658–1664.CrossRefGoogle Scholar
  21. Bhonsle, J. B., Deshpande, V. H., & Ravindranathan, T. (1994). Synthesis of (+)-zingiberene. Indian Journal of Chemistry (Section B), 33B(4), 313–316.Google Scholar
  22. Bicchi, C., & Sandra, P. (1987). Capillary gas chromatography in essential oil analysis (C. Bicchi & P. Sandra, Eds., pp. 85–121) Heidelberg: Huethig Verlag.Google Scholar
  23. Birch, E. J. (1965). Reduction/hydrolysis of p-substituted phenols (Cited from Lewis, K. G., Williams, G. J. 1965). Tetrahedron Letters 4573 and Teisseire 1991.Google Scholar
  24. Boniface, C., Vernin, G., & Metzger, J. (1987). Identification informatisee de composes par ana- lyse combinee: Spctres de masse-indices de Kovats. Analusis, 15, 564–568.Google Scholar
  25. Breeden, D. C., & Coates, R. M. (1995). 7-Epizingiberene, a novel bisabolene sesquiterpene from wild tomato leaves (erratum to document cited in CA 121: 276729). Tetrahedron, 51(6), 1533.Google Scholar
  26. Brogle, H. (1982). Supercritical fluid CO2 extract. Chemistry and Industry, 12, 385–390.Google Scholar
  27. Bruins, A. P. (1987). Capillary gas chromatography in essential oil analysis (P. Sandra & C. Bicchi, Eds., pp. 329–357). Heidelberg: Huethig Verlag.Google Scholar
  28. Charles, R., Garg, S. N., & Kumar, S. (2000). New gingerdione from the rhizomes of Zingiber officinale. Fitoterapia, 71(6), 716–718.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Chau, F. T., Mok, D. K. W., Gong, F., Tsui, S. K., Wong, S. K., Huang, L. Q., et al. (2001). Fingerprinting analysis of raw herb: Application of chromometrics techniques for finding out chemical fingerprint of Chinese herb. Analytical Sciences, 17(Suppl), 419–422.Google Scholar
  30. Chen, Y. H., & Guo, H. Z. (1980). A survey of the raw and dry ginger produced in Szechaun (China). Yao Hsueb Tung Pao, 15(10), 12–13.Google Scholar
  31. Chen, C. C., & Ho, C. T. (1988). GC analysis of volatile components of ginger oil (Zingiber officinale roscoe) extracted with liquid carbon dioxide. Journal of Agricultural and Food Chemistry, 36(2), 322–328.CrossRefGoogle Scholar
  32. Chen, C. C., Kuo, M. C., WU, C. M., & Ho, C. T. (1986). Ginger oil extracted by liquid carbon dioxide. Shib Pin ko Hsueb, 13(3–4), 188–197.Google Scholar
  33. Chen, Y., Li, Z., Xue, D., & Qi, L. (1987). Determination of volatile constituents of Chinese medicinal herbs by direct vaporization capillary gas chromatography–mass spectrometry. Analytical Chemistry, 59(5), 744–749.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Chen, Y., Cai, T., Fu, L., & Shan, J. (2001). Improved high performance liquid chromatography (HPLC) determination of pungent constituents of ginger. Shipin Kexue (Beijing), 22(4), 60–63.Google Scholar
  35. Connell, D. W. (1970). Chemistry of the essential oil and oleoresin of ginger (Zingiber officinale). Flavour Industry, 10, 677–693.Google Scholar
  36. Connell, D. W. (1971). Chemical composition of certain products from ginger (Zingiber officinale). Australian Chemical and Process Engineering, 24(11), 27.Google Scholar
  37. Connell, D. W., & Jordan, R. A. (1971). Composition and distinctive volatile flavor characteristics of the essential oils from Australian-grown ginger (Zingiber officinale). Journal of the Science of Food and Agriculture, 22(2), 93–95.CrossRefGoogle Scholar
  38. Connell, D. W., & McLachlan, B. (1972). Natural pungent compounds IV examination of the gingerols, shogaols, paradol and related compounds by TLC and GC. Journal of Chromatography, 67(1), 29–35.CrossRefGoogle Scholar
  39. Connell, D. W., & Sutherland, M. D. (1969). A re-examination of gingerol, shogaol and zingerone, the pungent principles of ginger (Zingiber officinale roscoe). Australian Journal of Chemistry, 22, 1033–1043.CrossRefGoogle Scholar
  40. Dambatta, B. B., Kazaure, M. A., & Tapley, K. N. (1998). Extraction and characterization of essential oils from Nigerian ginger. Advances in Colour Science and Technology, 1(3), 80–82.Google Scholar
  41. Data, A., & Sukul, N. (1987). Antifilarial effect of Z. officinalis on Dirofilaria immitis. Journal of Helminthology, 61, 268–270.CrossRefGoogle Scholar
  42. De Pooter, H. L., Coolsack, B. A., Dirinck, P. J., & Schamp, N. M. (1985). GLC of the headspace after concentration on Tenax GC of the essential oils of apples, fresh celery, fresh lovage, honeysuckle and ginger extracts. In A. Berkeim, J. Sweden, & J. C. Scheffer (Eds.), Essential oils and aromatic plants. Dordrecht: Martinus Nijhoff/Dr W. Junk.Google Scholar
  43. Denyer, C., Jackson, P., Loakes, D. M., Ellis, M. R., & Young, D. A. (1994). Isolation of anti- rhinoviral sesquiterpenes from ginger (Zingiber officinale Rosc.). Journal of Natural Products, 57, 658–662.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Ding, A., & Ding, Q. (1988). Comparison of the contents of main chemical constituents in differ- ent processed preparations of ginger. Zhongyao Tongbao, 13(11), 657–659.Google Scholar
  45. Dowdle, P. A., Corr, S., & Harris, H. (2002). Solvent extraction process. Patent WO 2002 036232 A1, date 20020510, Appl. WO 2001 GB4904.Google Scholar
  46. Duke, J. A. (1994). Biologically active compounds in important spices. In G. Charalambous (Ed.), Spices, herbs and edible fungi (Vol. 34, pp. 225–250). Amsterdam: Elsevier Science.Google Scholar
  47. Dung, N. X., Chin, T. D., & Leclercq, P. A. (1995). Chemical investigation of the aerial parts of Zingiber zerumbet (L.) Sm. From Vietnam. The Journal of Essential Oil Research, 7(2), 153–157.CrossRefGoogle Scholar
  48. Duve, R. N. (1980). Highlights on the chemistry and pharmacology of wild ginger (Zingiber zerumbet smith). Fiji Agricultural Journal, 42(1), 41–43.Google Scholar
  49. Ebwele, R. O., & Jimoh, A. A. (1988). Local processing of ginger: Prospects and problems proceedings of the first national ginger workshop (pp. 22–33). Umudike: National Root Crops Research Institute.Google Scholar
  50. Ekundayo, O., Laasko, I., & Hiltunen, R. (1988). Composition of ginger (Zingiber officinale roscoe) volatile oils from Nigeria. Flavour and Fragrance Journal, 3(2), 85–90.CrossRefGoogle Scholar
  51. El-Hamouly, M. M. A., & Mohamad. (2001). Phytochemical and biological evaluation of volatile constituents of Zizyphus phlembristi (L) wild leaves and flowering tops, cultivated in Egypt Al-Azhar. Journal of Pharmaceutical Sciences, 28, 370–379.Google Scholar
  52. Endo, K., Kanno, E., & Oshima, Y. (1990). Structures of antifungal diarylhepterones, ginger- enones A, B, C and isogingerenone B, isolated from the rhizomes of Zingiber officinale. Phytochemistry, 29, 797–799.CrossRefGoogle Scholar
  53. Erler, J., Vostrowsky Strobel, H., & Knobloch, K. (1988). Essential oils from ginger (Zingiber officinale roscoe). Zeitschrift für Lebensmittel-Untersuchung und -Forschung, 186(3), 231–234.CrossRefGoogle Scholar
  54. Fagbento, O., & Jauncey, K. (1994). Chemical and nutritional quality of fermented fish silage containing potato extracts, formalin or ginger. Food Chemistry, 50(4), 383–388.CrossRefGoogle Scholar
  55. Faulhaber, S., & Shirey, R. (1998). Solid-phase microextraction for the sampling in aromatic analysis. LaborPraxis, 22(5), 52. 55–58.Google Scholar
  56. Flisak, J. R., & Hall, S. S. (1986). Alkylation-reduction of carbonyl systems. 15. Efficient syntheses of beta-sesquiphellandrene and zingiberenol employing a tandem arylation-multistep reduction-hydrolysis sequence. Synthetic Communications, 16(10), 1217–1228.CrossRefGoogle Scholar
  57. Garnero, J., & Tabacchi, R. (1987). Examples of artifact formation by chromatographic tech- niques. In P. Sandra & C. Bicchi (Eds.), Capillary gas chromatography in essential oil analysis (pp. 359–366). Heidelberg: Huethig Verlag.Google Scholar
  58. Goku, K. (1983). Tablets as breath refreshners. Japan Kokai Tokyo Kobo Patent Jp 58,088, 308 A2, date 1983 05 26 Appl. JP 1981–185, 655.Google Scholar
  59. Gopalam, A., & Ratnambal, M. J. (1989). Essential oils of ginger. Indian Perfumer, 33(1), 63–69.Google Scholar
  60. Goto, C., Kasaya, S., Koga, K., Ohmoto, H., & Kagei, N. (1990). Lethal efficacy of extract from Z. officinale or (6)-shogaol and (6)-gingerol in Anisakis larvae in vitro. Parasitology, 10, 653–656.CrossRefGoogle Scholar
  61. Grosh, W. (1994). Determination of potent odorants in foods by aroma extract dilution analysis (AEDA) and calculation of odor quality values (COAVS). Flavour and Fragrance Journal, 9, 147–158.CrossRefGoogle Scholar
  62. Guenther, E. (1952). The essential oils, 2nd ed. Individual essential oils of the plant families (Vol. 5). New York: van Nostrand.Google Scholar
  63. Gujral, S., Bhumra, H., & Swaroop, M. (1978). Cholesterolemic activity of pungent principles of ginger. Nutrition Reports International, 17, 183–189.Google Scholar
  64. Guo, P., Xu, J., Xu, S., & Wang, K. (1997). Inhibition of fulvic acid-induced hydrogen peroxide production in chondrocyte by ginger volatile oil. Zbongguo Zbongyao Zasshi, 22(9), 559–561.Google Scholar
  65. Gurib-Fakim, A., Mandarbaccus, N., Leach, D., Doimo, L., & Wohlmuth, H. (2002). Essential oil composition of Zingiberaceae species from Mauritius. The Journal of Essential Oil Research, 14(4), 271–273.CrossRefGoogle Scholar
  66. Haq, F., Faruque, S. M., Islam, S., & Ali, E. (1986). Studies on Zingiber officinale roscoe. Part 1. Chemical investigation of the rhizome. Bangladesh Journal of Scientific and Industrial Research, 21(1–4), 61–69.Google Scholar
  67. Harrison, A. G. (1983). Chemical ionization mass spectrometry. Boca Raton: CRC Press.Google Scholar
  68. Harvey, D. J. (1981). Gas chromatographic studies of ginger constituents. Journal of Chromatography, 212, 75–84.CrossRefGoogle Scholar
  69. Hasnah, M. S., & Ahmad, A. R. 1993. Some important metabolites from Malaysian ginger. In N. A. Sharman (Ed.), Applications of plants in vitro technology (pp. 191–196). Proceedings of the international symposium, Serdand, Malaysia, 16–18 November 1993 Department of Biochem and Microbiology, Universiti Pertanian Malaysia, Serdang, Malaysia.Google Scholar
  70. He, W., Li, L., Guo, S., & Li, Y. (1999). Extraction of ginger oil and its anti-oxidative activity for edible oils and fats. Zbongguo Youzhi, 24(1), 42–44.Google Scholar
  71. He, W., Li, L., Li, Y., Guo, S., & Guo, B. (2001). Anti-oxidative activity of a new compound from ginger. Zbongguo Bingli Shenli Zashi, 17(5), 461–463.Google Scholar
  72. Heath, H. P., & Reineccius, G. (1988). Flavour chemistry and technology. Westport: Avi Publishing.Google Scholar
  73. Herout, V., Benesova, V., & Pliva, J. (1953). The sesquiterpenes of ginger oil. Cull Czeck Chemical Communications, 18, 248–256.CrossRefGoogle Scholar
  74. Hikino, H., Kiso, Y., Kato, N., Hamada, Y., Shiori, T., Aiyama, R., et al. (1985). Antihepatotoxic activity of gingerols and diarylheptanoids. Journal of Ethnopharmacology, 14, 31–39.PubMedCrossRefPubMedCentralGoogle Scholar
  75. Hill, C. E., Dowdle, P. A., & Corr, S. (1999). Solvent extraction process PCT. Int. Appl. WO 0064,555 (Cl B 01 D1/00), 2 Nov 2000. G.B.Appl. 1999/9, 136, 22 April 1999.Google Scholar
  76. Ho, C. T., Zhang Shi, H., & Tang, J. (1989). Flavor chemistry of Chinese foods. Food Review International, 5(3), 53–87.CrossRefGoogle Scholar
  77. Huang, X., Wang, J., & Zhang, X. (1999a). Essential oil of Zingiber officinalis. Huaxue Shijie, 30(9), 420–433.Google Scholar
  78. Huang, X., Wang, J., & Zhang, X. (1999b). Determination of the pungent principles in ginger powder, ginger skin and baked ginger. Zbongcaoyae, 30(6), 423–425.Google Scholar
  79. Hus, H. J., Chang, H. L., & Jian, N. (1999). Synergistic natural pesticides containing garlic. Eur. Pat. Appl. 945,066, A1, 1999 09 29, Appl. 1999-302.286 (EP) 17P. US 6231865, BI, 2001 05 15, Appl. 1999-273636.Google Scholar
  80. Ibrahim, H., & Zakaria, M. B. (1987). Essential oils from three Malaysian Zingiberaceae species. Malaysian Journal of Science, 9, 73–76.Google Scholar
  81. ISI. (1975). Specification for ginger oleoresin. New Delhi: Indian Standards Institution.Google Scholar
  82. Jain, T. C., Varma, K. R., & Bhattacharya, C. S. (1962). Terpenoids XXVII GLC analysis of monoterpenes and its application to essential oils. Perfume Essential Oil Research, 53, 678–684.Google Scholar
  83. James, A. T., & Martin, A. J. P. (1952). Gas liquid chromatography. Analysis, 77, 198.Google Scholar
  84. Jennings, W., & Shibamoto, T. (1980). Qualitative analysis of flavour and fragrances volatiles by glass capillary gas chromatography. New York: Academic.Google Scholar
  85. Jo, K. S. (2000). Analysis of gingerol compounds of raw ginger (Zingiber officinale roscoe.) and its paste to high performance liquid chromatography mass spectrometry (LC-MS). Hanguk Sikpum Yongyang Kwabak Hoechi, 29(5), 747–751.Google Scholar
  86. Joulain, D., & Konig, W. A. (1998). The atlas of spectral data sesquiterpene hydrocarbons. Hamburg: E.B. Verlag.Google Scholar
  87. Kami, T., Nakayama, N., & Hayashi, S. (1972). Volatile constituents of Zingiber officinale. Phytochemistry, 11, 3377–3381.CrossRefGoogle Scholar
  88. Kano, Y., Tanabe, M., & Yasuda, M. (1990). On the evaluation of the preparation of Chinese medicinal prescriptions (V): Diterpenes from Japanese ginger Kinto. Shoyakugaku Zasshi, 44(1), 55–57.Google Scholar
  89. Kawara, H. (1998). Insecticidal baits containing ginger oil against cockroach. Japan Kokat Tokyo, 4 p. No 10, 017,405, A2, 20 Jan 1998, 1996–172, 020.Google Scholar
  90. Kawashi, S., Morimitsu, Y., & Osawa, T. (1994). Chemistry of ginger components and inhibitory factors of the arachidonic acid cascade. In C. T. Ho, T. Osawa, M. T. Huang, & R. T. Rosen (Eds.), Food phytochemicals for cancer prevention II (ACS symposium series 547). Washington, DC: American Chemical Society.Google Scholar
  91. Kikuzaki, H. (2000). Ginger for drug and spice purposes. In G. O. Maza & B. Dave (Eds.), Herbs, botanicals and teas (pp. 75–105). Lancaster: Technomic Publishing.Google Scholar
  92. Kikuzaki, H., & Nakatami, N. (1996). Cyclic diarylheptanoids from rhizomes of Zingiber officinale. Phytochemistry, 43(1), 273–277.CrossRefGoogle Scholar
  93. Kim, D. S. H. I. (2001). Pharmaceutical composition with natural products or synthetic analogs which are useful in the prevention and treatment of beta-amyloid protein-induced disease PCT. International Patent Application WO 0,130, 335 A2 date 2001 05 03, Appl. WO 2000-US41, 436.Google Scholar
  94. Kim, J. S., Koh, M. S., Kim, Y. H., Kim, M. K., & Hong, J. S. (1991). Volatile flavor components of Korean ginger (Zingiber officinale roscoe.). Hanguk Sikpum Kwabakhoechi, 23(2), 141–149.Google Scholar
  95. Kim, M. K., Na, M. S., Hong, J., & Jung, S. T. (1992). Volatile flavor components of Korean ginger (Zingiber officinale roscoe) extracted with liquid carbon. Hanguk Nongbua Hakborchi, 35(1), 59–63.Google Scholar
  96. Kitamura, Y., & Naguno, Y. (2000). Purification and characterization of cysteine proteinase inhibitor from fresh ginger rhizome Kenkyu Kiyo-Tokyo Kasei Daigaku 2. Shizen Kagaku, 40, 53–56.Google Scholar
  97. Kiuchi, F., Shibuya, M., & Sankawa, U. (1982). Inhibitors of the biosynthesis of prostaglandins. Chemical and Pharmaceutical Bulletin Tokyo, 30, 754–757.CrossRefGoogle Scholar
  98. Kobayashi, M., Shoji, N., & Ohizumi, Y. (1987). Gingerol, a novel cardiotonic agent, activates the Ca2+ pumping ATPase in skeletal cardiac sarcoplasmic reticulum. Biochimica et Biophysica Acta, 903, 96–102.PubMedCrossRefPubMedCentralGoogle Scholar
  99. Koedam, A. (1987). Some aspects of essential oil preparation. In P. Sandra & C. Bicchi (Eds.), Capillary gas chromatography in essential oil analysis, 903 Biochem Biophys Acta (pp. 13–28). Heidelberg: Huethig Verlag.Google Scholar
  100. Koenig, W. A., Rieck, A., Hardt, I., Gehrcke, B., Kubeczka, K. H., & Muhle, H. (1994). Enantiomeric composition of the chiral constituents of essential oils. Part 2: Sesquiter- pene hydrocarbon. Journal of High Resolution Chromatography, 17(5), 315–320.CrossRefGoogle Scholar
  101. Kostrzewa, E., & Karwowska, K. (1976). Characteristics of a flavor and odor extract of ginger. Proceedings of Institute Laboratory Badav Przem Sozyw, 26(1), 63–73.Google Scholar
  102. Kovats, E. (1958). Gas chromatographic characterization of organic compounds I. Retention indexes of aliphatic halides, alcohols, aldehydes, and ketones. Helvetica Chimica Acta, 41, 1915–1932.CrossRefGoogle Scholar
  103. Kovats, E. (1965). Advances in chromatography (J. C. Giddings & R. A. Keller, Eds., pp. 119–127). New York: Marcel Dekker.Google Scholar
  104. Koya, K. M. A., Premkumar, T., & Gautam, S. S. S. (1988). Chemical control of shoot borer Dichocrocis punctiferalis Guen. on ginger Zingiber officinale roscoe. Journal of Plantation Crops, 16(1), 58–59.Google Scholar
  105. Krishnakantha, T., & Lokesh, B. (1993). Scavenging for superoxide anions by spice principles. Indian Journal of Biochemistry & Biophysics, 30, 133–134.Google Scholar
  106. Krishnamurthy, N., Nambudiri, E. S., Mathew, A. G., & Lewis, Y. S. (1970). Essential oils of ginger. Indian Perfumer, 14(1), 1–3.Google Scholar
  107. Lapworth. (1917). Cited from Connell and Sutherland, 1969.Google Scholar
  108. Lawrence, B. M. (1983). Recent studies on the oil of Zingiber officinale roscoe. Perfumer Flavours, 9, 2–40.Google Scholar
  109. Lee, C. Y., Chiou, J. W., & Chang, W. H. (1982). Labdane-type diterpene: Galanolactone. Journal of the Chinese Agricultural Chemical Society, 20, 61–67.Google Scholar
  110. Lewis, Y. S., Mathew, A. G., Nambudiri, E. S., & Krishnamurthy, N. (1972). Oleoresin ginger. Flavour Industry, 3(2), 78–81.Google Scholar
  111. Li, A. (1995). Spectrometric determination of gingerol in ginger oil condiments. Zbongguo Tiaoweipin, 11, 30–32.Google Scholar
  112. Li, J., Wang, Y., Ma, H., Hao, J., & Yang, H. (2001). Comparison of chemical components between dry and fresh Zingiber officinale. Zbongguo Zbongyao Zassbi, 26(11), 748–751.Google Scholar
  113. Lin, Z. K., & Hua, Y. F. (1987). Chemical constituents of the essential oil from Zingiber officinale roscoe. Sichuan Youji Huaxue, 6, 444–448.Google Scholar
  114. Ma, X., Gu, Y., & Fu, J. (1990). Biosynthesis of LTB4 and selection of its inhibitors. Baiquien Yike Daxue Xuebao, 16(3), 222–225.Google Scholar
  115. Macleod, A. J., & Pieris, N. M. (1984). Volatile aroma constituents of Sri Lankan ginger. Phytochemistry, 9, 353–359.CrossRefGoogle Scholar
  116. Martins, A. P., Salqueiro, L., Goncalves, M. J., de Cunha, A. P., Vila, R., Canigueral, S., et al. (2001). Essential oil composition and antimicrobial activity of three Zingiberaceae from S Tome Principe. Planta Medica, 67(6), 580–584.PubMedCrossRefPubMedCentralGoogle Scholar
  117. Masada, Y. (1976). Analysis of essential oils by gas chromatography and mass spectrometry (pp. 251–255). New York: Wiley.Google Scholar
  118. Masada, Y., Inoue, T., Hashimoto, K., Fujika, M., & Shiraki, K. (1973). Studies on the pungent principles of ginger (Zingiber officinale roscoe) by GC–MS. Yakugaku Zasshi, 93(3), 318–321.PubMedCrossRefPubMedCentralGoogle Scholar
  119. Masuda, T., Matsumura, H., Oyama, Y., & Takeda, Y. (1998). Synthesis of (+) cassumunins A and B, new cucuminoids antioxidants having protective activity on the living cell against oxi-dative damage. Journal of Natural Products, 61, 609–613.PubMedCrossRefPubMedCentralGoogle Scholar
  120. Mathew, A. G., Krishnamurthy, N., Nambudiri, E. S., & Lewis, Y. S. (1973). Oil Ginger. Flavour Industry, 4(5), 226–229.Google Scholar
  121. Meireles, M. A. A., & Nikolov, Z. I. (1994). Extraction and fractionation of essential oils with liquid carbon dioxide (LCO2). In G. Charlambous (Ed.), Spices, herbs and edible fungi (Vol. 34, pp. 171–199). Amsterdam: Elsevier Science.Google Scholar
  122. Meyer-Warnod, B. (1984). Natural essential oils. Perfumer and Flavour, 9, 93.Google Scholar
  123. Mitra, C. R. (1975). Important Indian spices III. Ginger (Zingiberaceae). Rechst Aromen Koerperpflegem, 25(6), 170.Google Scholar
  124. Molyneux, F. (1971). Ginger—A natural flavor essence. Australian Chemical and Process Engineering, 24(3), 29. 31, 33–34.Google Scholar
  125. Mosandhl, A. (1992). Capillary gas chromatography in quality assessment of flavours and fragrances. Journal of Chromatography, 624, 267–292.CrossRefGoogle Scholar
  126. Moyler, D. A., Browning, R. M., & Stephens, M. A. (1994). Carbon dioxide extraction of essential oils. In G. Charlambous (Ed.), Spices, herbs and edible fungi (Vol. 34, pp. 145–170). Amsterdam: Elsevier Science.Google Scholar
  127. Murakami, A., Nakamura, Y., Ohto, Y., Tanaka, T., Makita Koshimizu, K., & Ohigashi, H. (1999). Cancer preventive phytochemicals from tropical Zingiberaceae. In H. R. Whitaker (Ed.), Food for health in Pacific rim (pp. 125–133). International conference on food, science and technology. Turnbull: Food & Nutrition Press. 1997.Google Scholar
  128. Nakatani, N. (1995). Chemistry and properties of pungent compounds. Koryo, 185, 59–64.Google Scholar
  129. Nakatani, N., & Kikuzaki, H. (2002). Antioxidants in ginger family. ACS Symposium Series Quality Management of Nutraeceuticals, 803, 230–240.CrossRefGoogle Scholar
  130. Nakazawa, T., & Ohsawa, K. (2002). Metabolism of (6)-gingerol in rats. Life Sciences, 70(18), 2165–2175.PubMedCrossRefPubMedCentralGoogle Scholar
  131. Narayanan, C. S., & Mathew, A. G. (1985). Chemical investigation on spice oils. Indian Perfumer, 29(1–2), 15–22.Google Scholar
  132. Natarajan, C. P., Bai, R. P., Krishnamurthy, M. N., Raghavan, B., Shankaracharya, N. B., Kuppuswamy, S., et al. (1972). Chemical composition of ginger varieties and dehydration studies on ginger. Journal of Food Science and Technology, 9(3), 120–124.Google Scholar
  133. Ney, K. H. (1990). Aromagrams of spices. Alimenta 29(5), 91–93, 95–100.Google Scholar
  134. Ni, M., Chen, Z., & Yan, B. (1988). Synthesis of optically active sesquiterpenes and exploration of their anti-fertility effect. Huadong Huagong Xueyuan, 14, 675–679.Google Scholar
  135. Nigam, I. C., & Levi, L. (1963). Column- and gas-chromatographic analysis of the oil of wild ginger. Identification and estimation of some new constituents. Canadian Journal of Chemistry, 41(7), 1726–1730.CrossRefGoogle Scholar
  136. Nigam, M. C., Nigam, I. C., Levi, L., & Handa, K. L. (1964). Essential oils and their constituents XXII. Detection of new trace components in oil of ginger. Canadian Journal of Chemistry, 42(11), 2610–2615.CrossRefGoogle Scholar
  137. Nishimura, O. (2001). Enantiomer separation of the characteristic odorants in Japanese fresh rhizomes of Zingiber officinale roscoe (ginger) using multi-dimensional GC system and confirmation of the odor character of each enantiomer by GC-olfactometry. Flavour and Fragrance Journal, 16(1), 13–18.CrossRefGoogle Scholar
  138. Nomura, H., & Tsurami, S. (1926). Structure of shogaol. Proceedings of Imperial Academy Tokyo, 2, 229.CrossRefGoogle Scholar
  139. Ohkubo, K., Tagaki, Y., Takatoku, H., Hori, K., Kumoku, H., & Shibuya, Y. (2000). Ceramide production-accelerating agent. European Patent Applications. EP 993,822 (CL. AK61K7/48) 19 Apr 2000 JP Appl. 1999/122,402 28 Apr 1999.Google Scholar
  140. Okwu, D. E. (2001). Evaluation of the chemical composition of indigenous spices and flavoring agents. Global Journal of Pure and Applied Sciences, 7(3), 455–459.CrossRefGoogle Scholar
  141. Onyenekwe, P. C., & Hashimoto, S. (1999). The composition of the essential oil of dried Nigerian ginger (Zingiber officinale). Z. Lebensm. Unters Forsch. Food Research and Technology, 209(6), 407–410.CrossRefGoogle Scholar
  142. Paquette, L. A., & Kinney, W. A. (1982). A new synthon for the regiospecific y-alkylation of 2-cyclohexenones. Application to the synthesis of zingiberenol and oxygenated bicyclo (3.3.1) nonanes. Tetrahedron Letters, 23(2), 131–134.CrossRefGoogle Scholar
  143. Pellerin, P. (1991). Supercritical fluid extraction of natural raw materials for the flavor and perfume industry. Perfumer Flavor, 16(4), 37–39.Google Scholar
  144. Pliva, J., Horak, M., Herout, V., & Sorm, F. (1960). T.I. Sesquiterpene, S10–S11 Sammlung der Spectrum und Physikalischen Konstanten. Berlin: Akademie Verlag.Google Scholar
  145. Prachi, S., Tilak, R., & Singh, B. M. (2002). Salicylic acid induced insensitivity to culture filtrate of Fusarium oxysporum f. sp. Zingiberi in the calli of Zingiber officinale roscoe. European Journal of Plant Pathology, 108(1), 31–39.CrossRefGoogle Scholar
  146. Purseglove, J. W., Brown, G. G., Green, C. L., & Robbins, S. R. J. (1981). Spices, vols I and II. New York: Longman.Google Scholar
  147. Rani, K. (1999). Cyclization of farnesyl pyrophosphate into sesquiterpenoids in ginger rhizomes (Zingiber officinale). Fitoterapia, 70(6), 568–574.CrossRefGoogle Scholar
  148. Rogacheva, S., Kuntcheva, M., Obretenov, T., & Vernin, G. (1998). Formation and structure of melanoidins in foods and model systems. In J. O’Brien, E. E. Nurstsen, M. J. C. Crabbe, & J. M. Ames (Eds.), The Maillard reaction in foods and medicine (pp. 89–93). Cambridge: Royal Society of Chemistry.Google Scholar
  149. Rosella, M.A., de Pfirter, G.B., Mandrile, E.L., 1996. Ginger (Zingiber officinale roscoe Zingiberaceae): ethnopharmacognosy, cultivation, chemical composition and pharmacology. Acta Pharmaceutical Bonaerense 15 (1), 35–42.Google Scholar
  150. Roy, B. C., Goro, M., & Hirose, T. (1996). Extraction of ginger oil with supercritical carbon dioxide experiments and modeling. Industrial and Engineering Chemistry Research, 35, 607–612.CrossRefGoogle Scholar
  151. Sadtler Research Laboratories. (1985). The Sadtler standard gas chromatography retention index library. Philadelphia: Sadtler Research Laboratories Division of Bio-Rad Laboratories.Google Scholar
  152. Sane, R. T., Phadke, M., Hijli, P. S., Shah, M., & Patel, P. H. (1998). Geographical variation study on gingerol (a pungent principle from Zingiber officinale) and ginger oil, using HPTLC technique and accelerated stability study on gingerol from Zingiber officinale using HPTLC method. Indian Drugs, 35(1), 37–44.Google Scholar
  153. Sharma, R. K., Misra, B. P., Sarma, T. C., Bordoloi, A. K., Pathak, M. G., & Leclercq, P. A. (1997). Essential oils of Curcuma longa L. from Bhutan. Journal of Essential Oil Research, 9, 589–592.CrossRefGoogle Scholar
  154. Tanabe, T., Kami, T., & Hayashi. (1992). Volatile separated compounds obtained by SIM technique. Phytochemistry, 12, 3388–3390.Google Scholar
  155. Taveira, et al. (1997). Chemistry of the essential oil and oleoresin of ginger (Zingiber officinale). Flavor Industry, 10, 677–693.Google Scholar
  156. Thomson, E. H., Wolf, I. D., & Allen, C. E. (1974). Ginger rhizome: A new source of proteolytic enzyme. Journal of Food Science, 38, 652–655.CrossRefGoogle Scholar
  157. Toofanian, F., & Stegeman, H. (1988). Comparative effect of ethylene oxide and gamma irradiation of the chemical, sensory and microbial quality of ginger, cinnamon, fennel and fenugreek. Acta Alimentaria, 17(4), 271–281.Google Scholar
  158. Vahira-Lechat, I., Menut, C., Lamaty, G., & Bessiere, J. M. (1996). Huiles essentielles de Polynesie Francaise Rivista Ital. EPPOS, (Special Edition), pp. 627–638.Google Scholar
  159. Van Beek, T. A. (1991). Special methods for the essential oil of ginger. In H. F. Linkens & J. F. Jackson (Eds.), Modern methods of plant analysis: Essential oils and wax (Vol. 12, pp. 79–97). Berlin/Heidelberg: Springer.Google Scholar
  160. Van Beek, T. A., Posthumus Lelyveld, G. P., Hoang, V. P., & Yen, B. T. (1987). Investigation of the essential oil of Vietnamese ginger. Phytochemistry, 26(11), 3005–3010.CrossRefGoogle Scholar
  161. Van den Dool, H., & Kratz, P. D. (1963). A generalization of the retention index system including linear temperature programmed gas–liquid partition chromatography. Journal of Chromatography, 11, 463–471.CrossRefGoogle Scholar
  162. Variyar, P. S., Gholap, A. S., & Thomas, P. (2000). Estimation of pungency in fresh ginger: A new fluorimetric assay. Journal of Food Composition and Analysis, 13(3), 219–225.CrossRefGoogle Scholar
  163. Varma, K. R., Jain, T. C., & Bhattacharya, S. C. (1962). Terpenoids. XXXIV. Structure and stereo chemistry of zingiberol and juniper camphor. Tetrahedron, 18, 974–984.CrossRefGoogle Scholar
  164. Verma, S. K., Singh, J., Khamesra, R., & Bordia, A. (1993). Effect of ginger on platelet aggregation in man. The Indian Journal of Medical Research, 98, 240–242.PubMedPubMedCentralGoogle Scholar
  165. Vernin, G. (1970). La Chromatographie en Couche Mince. Techniques et Applications en Chimie Organique. Dunod, Paris, Hungarian translation, originally published in 1970 as Vekonyreteg-Kromatographia: A Serves Kemiaban, Muskaki Konyvkiado, Budapest.Google Scholar
  166. Vernin, G. (Ed.). (1982). The chemistry of heterocyclic flavouring and aroma compounds. Chichester: Ellis Horwood.Google Scholar
  167. Vernin, G., & Parkanyi, C. (1994). Ginger oil (Zingiber officinale roscoe). In G. Charalambous (Ed.), Spices, herbs and edible fungi (Vol. 34, pp. 579–594). Amsterdam: Elsevier Science.Google Scholar
  168. Vernin, G., & Petitjean, M. (1982). Mass spectrometry of heterocyclic compounds used for flavourings. The chemistry of heterocyclic flavouring and aroma compounds (pp. 305–342). Chichester: Ellis Horwood.Google Scholar
  169. Vernin, G., Debrauwer, L., Vernin, G. M. F., Zamkostian, R. M., Metzger, J., Larice, J. L., et al. (1992). Heterocycles by thermal degradation of some Amadori intermediates. In G. Charalambous (Ed.), Off-flavours in foods and beverages (pp. 567–624). Amsterdam: Elsevier Science.CrossRefGoogle Scholar
  170. Wang, W. (2001). Antioxidant properties of four vegetables with sharp flavor. Shipin Yu Fajiao Gomgye, 27, 28–31.Google Scholar
  171. Wen, Z., Yu, D., & Lu, Q. (2001). Study on antioxidation of ginger oil in concentrated fish oil. Zbongguo Youzhi, 26(4), 58–60.Google Scholar
  172. Wenninger, J. A., Yates, R. L., & Dolinsky, M. (1967). High resolution infrared spectra of some naturally occurring sesquiterpene hydrocarbons. Journal of Association and Analytical Chemistry, 50(6), 1313–1335.Google Scholar
  173. Yamahara, J., Matsuda, H., Yamaguchi, S., Shimoda, H., Murakami, N., & Yoshikawa, M. (1995). Pharmacological study on ginger processing I. Antiallergic activity and cardiotonic action of gingerols and shogaols. Nature Medicine Tokyo, 49(1), 76–83.Google Scholar
  174. Zaidi, V. H., Variyar, P. S., & Gholap, A. S. (1992). Estimation of inorganic elements in trace amounts in ginger. Journal of Food Composition and Analysis, 9, 220–229.Google Scholar
  175. Zhu, L. F., Li, Y. H., Li, B. L., Ju, B. Y., & Zhang, W. L. (1995). Aromatic plants and essential constituents (Supplement I). South China Institute of Botany Chinese Academy of Sciences Hai Feng Publishing. Distributed by Peace Book Ltd., Hong Kong.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kodoth Prabhakaran Nair
    • 1
  1. 1.International Agricultural ScientistCalicutIndia

Personalised recommendations