Synthesis and Commercial Preparation of Food Emulsifiers

  • Gerard L. Hasenhuettl


Natural emulsifiers such as casein, egg yolk, and lecithin are extracted and commercially processed for use in foods. Emulsifiers are also chemically or enzymatically synthesized from natural materials. Structural design of emulsifiers may be accomplished by chemical or enzymatic modification of natural materials. Chemical reactions are generally carried out at high temperatures to overcome low mutual solubility of the reactants. Side reactions may cause undesirable byproducts leading to dark colors, as well as odors and off-flavors. Enzymatic modifications can be performed at lower temperatures, but suffer from high costs and problems with solubility.

Commercial processes may be either batch or continuous. Batch processes are best suited to a wide product range and smaller batch sizes. Continuous processes are better for a narrow product range and larger scale production. Reactor design is critical for emulsifier production of food emulsifiers having high quality.


Functional group design Monoacylglycerols Direct esterification Propylene glycol esters Sorbitan esters Sucrose esters Sodium stearoyl lactylate Monoacylglycerol derivatives Modified lecithin Lecithin Casein Whey protein Modified cellulose Surface-active hydrocolloids Gum Arabic Guar gum Locust bean gum Batch reactor Continuous reactor Enzymatic reactor Enzymatic modification Lipase Transglutaminase 


  1. Akoh C, Swanson B (1994) Carbohydrate polymers and fat substitutes. Marcel Dekker, New YorkGoogle Scholar
  2. Allen RR, Campbell RL (1967) Process for the manufacture of fatty acid esters. U.S. Patent 3,313,834. Anderson Clayton Co., Houston, TXGoogle Scholar
  3. Anon (1983) Sodium stearoyl 2-Lactylate. India Pat. 148301, Council for Scientific & Industrial Research IndiaGoogle Scholar
  4. Aoi N (1995) Preparation of fatty acid esters of fractionated polyglycerin as emulsifiers. Japan Pat. 07218560A, Toiyo Kogaku KKGoogle Scholar
  5. Aracil-Mira JAE (2000) Producing fatty acid esters of diacetyltartaric acid using biocatalysis. Spain Pat. ES2146162, Universidad ComplutenseGoogle Scholar
  6. Arcos JA et al (2000) Continuous enzymatic esterification of glycerol with polyunsaturated fatty acids in a packed bed reactor. Biotechnol Bioeng 68(5):563–570PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bade V (1978) Process for the manufacture of citric acid esters of partial fatty acid glycerides. U. S. Pat. 4071,544Google Scholar
  8. Belitz HD, Werne G, Schienberle P (2004a) Food chemistry. Springer, BerlinCrossRefGoogle Scholar
  9. Belitz HD, et al. (2004b) Food chemistry. Springer, p 515, Table 510.511Google Scholar
  10. Brumley WC (1985) Characterization of polysorbates by OH-negative ion chemical ionization mass spectrometry. J Agric Food Chem 33(3):368–372CrossRefGoogle Scholar
  11. Cawley C, Grad YM (1969) Preparation of monoglyceride phosphoric acid and salts thereof. U. S. Patent 3, 423–440: 3 423–440Google Scholar
  12. Charlemange D, Legoy MD (1995) Enzymic synthesis of polyglycerol fatty acid esters in a solvent-free system. J Am Oil Chem Soc 72(1):61–65CrossRefGoogle Scholar
  13. Charles G et al (2003) Preparation of diglycerol and triglycerol via direct polymerization of glycerol with basic mesoporous catalysts. Oleagineux Corps Gras Lipides 19(1):74–82CrossRefGoogle Scholar
  14. Chen H-C et al (2012) Product selectivity and optimization of lipase-catalyzed 1,3-propylene glycol esters by mixture design and RSM. J Am Oil Chem Soc 89:231–241CrossRefGoogle Scholar
  15. Chou C-C (2013) Enzymatic production of monoglycerides. Global Pat. Aug. 22, 2013, Sunho Biodiesel America Ltd., p 17Google Scholar
  16. Christiansen K, Creemers V (2008) Preparation of 2-isomers of propylene glycol monoesters. Global, p 8Google Scholar
  17. Clare DA, Daubert CR (2010) Transglutaminase catalysis of modified whey protein dispersions. J Food Sci 75(4):C369–C377PubMedCrossRefPubMedCentralGoogle Scholar
  18. Clare DA, Daubert CR (2011) Expanded functionality of modified whey protein dispersions after transglutaminase catalysis. J Food Sci 76:C76–C84CrossRefGoogle Scholar
  19. Elsner AE et al (1989) Synthesis and characterization of sucrose fatty acid polyesters. Nahrund 33(9):845–851Google Scholar
  20. Eng S (1972) Producing lactylic acid esters of fatty acids. U. S. Pat. 3 636 017, GLYCO, INC.Google Scholar
  21. Esbuis CRV, et al. (1984) Polymerization of glycerol using zeolite catalysis. Global pat. PCT WO 9418256, Unichema Chemie BVGoogle Scholar
  22. Fittermann J et al (2012) Co-melting solid Sucrose and multivalent soaps for solvent-free synthesis of sucrose esters. Tetrahedron Lett 48(23):4111–4113CrossRefGoogle Scholar
  23. Franzke C, Knoll J (1980) Zur enzymatischen Milchsäurebestimmung in Emulgatoren. Nahrung 24(1):89–90CrossRefGoogle Scholar
  24. Freund EH (1968) Composition comprising succinyl half esters. US Pat. 3,370,958. National Dairy Products Co.Google Scholar
  25. Furuya N, et al. (1992) Stabilization of polyoxyethylene sorbitan esters. Japan Pat. JP 04108781, A2 Nipon Yushi K.KGoogle Scholar
  26. Gaonkar AG, McPherson A (eds) (2006) Ingredient interactions: effects on food quality. CRC Press/Taylor & Francis, Boca Raton, FLGoogle Scholar
  27. Garti N, Asarin A (1983) Analysis of sorbitan fatty acid esters by HPLC. J Am Oil Chem Soc 60(6):1151–1154CrossRefGoogle Scholar
  28. Gladstone C (1960) Process of preparing esters of acetyl tartaric and citric acids. U. S. Pat. 2,938027, Wieco Chemical Co.Google Scholar
  29. Griffin WC (1945) U.S. Pat. 2, 380,166Google Scholar
  30. Gu K (2002) Study on solvent fractionation of soybean lecithin. Zhongguo Youzhi 27(1):31–33Google Scholar
  31. Guillard V et al (2004) Edible acetylated monoglycerid films: effect of film-forming technique on moisture barrier properties. J Am Oil Chem Soc 81(11):1053–1058CrossRefGoogle Scholar
  32. Ha JH et al (1987) Optimum conditions to esterify alginic acid. Hanlguk Susan Hakoechi 20(3):202–207Google Scholar
  33. Hadeball K et al (1986) Synthesis and properties of succinylated monoglycerides. Nahrung 30(2):209–211CrossRefGoogle Scholar
  34. Hari-Krishna S, Karanth N (2002) Lipase and lipase-catalyzed esterification reactions in nonaqueous media. Cat Rev 44(4):499–591CrossRefGoogle Scholar
  35. Hayes DG et al (2012) Modification of oligo-ricinoleic acid and its derivatives with 10-undecenoic acid via lipase-catalyzed esterification. Polymers 4:1037–1055CrossRefGoogle Scholar
  36. Hibino H, et al. (1989) Preparation of lysophosphatidylcholine by acylation of glycerophosphocholine. HCAPLUS 112: 217462. Japan Pat. JA 01311088 A2, Nippon Oils Fats. JA 01311088 A2Google Scholar
  37. Hibino H, et al. (1991) Hydrolysis of synthetic phosphatidycholine with phospholipase. Japan Pat. JP 03007589 A2, Nippon Oil Fats Co.Google Scholar
  38. Hoq MM et al (1985) Some characteristics of continuous glyceride synthesis by lipase in a microporous hydrophobic biomembrane reactor. Agric Biol Chem 49(2):335–342CrossRefGoogle Scholar
  39. Huang J et al (2012) Enzyme-catalyzed synthesis of citrate: kinetics and thermodynamics. J Am Oil Chem Soc 89:1627–1632CrossRefGoogle Scholar
  40. Karuma MSL et al (2013) A simple enzymatic approach for selective acylation of phosphatidylethanolamine. J Am Oil Chem Soc 90:369–375CrossRefGoogle Scholar
  41. Kasori Y, Taktabagai T (1997) Preparation of fatty acid sucrose esters for foods. Japan Pat. JP 09188690 A2, Mitsubishi Chemical Industries Ltd.Google Scholar
  42. Kazyulima M et al (1986) Production of phosphorus containing emulsifiers. Maslo-Zihr Prom-st 8:22–23Google Scholar
  43. Li YK et al (2003) Enzyme-catalyzed regioselective synthesis of sucrose esters. Yopp Huaxue 23(8):770–775Google Scholar
  44. Lim SEA (2002) Design issues of pervaporation membrane reactors for esterification membrane bioreactor design and kinetic model for reaction engineering and simulation: a review. Chem Eng Sci 57:22–23. 4943–4946CrossRefGoogle Scholar
  45. Marquez-Alvarez C et al (2004) Solid catalysis for the synthesis of esters of glycerol, polyglycerols and sorbitol from renewable resources. Top Catal 27:105–117CrossRefGoogle Scholar
  46. Masashi S, et al. (2005) Method for producing phospholipid. U. S. Pat. 6,170,476AGoogle Scholar
  47. McDowell RH (1970) New reactions of proplene glycol alginate. J Soc Cosmet Chem 21:441–457Google Scholar
  48. McDowell RH (1975) New developments in the chemistry of alginates and their use in foods. Chem Ind 9:391–395Google Scholar
  49. Montero JB et al (2003) Lipase catalyzed synthesis of monoacylglycerol in a homogeneous system. Biotechnol Lett 25(8):641–644CrossRefGoogle Scholar
  50. Morgado MA et al (1995) Hydrolysis of lecithin by phospholipase A2 in mixed reversed micelles. J Chem Technol Biotechnol 63(2):181–189CrossRefGoogle Scholar
  51. Murakama C et al (1989) Determination of sucrose esters of fatty acids by high performance liquid chromatography. Shokuhin Easeigaku Zasshi 30(4):306–313CrossRefGoogle Scholar
  52. Nakamura T et al (1986) Sucrose fatty acid esters – reaction at atmospheric pressure. Inf Int 18(37):8–13Google Scholar
  53. Nielson V et al (1971) Propylene glycol alginate. German Pat; DE 2641303. Merck & Company, House Station, NJGoogle Scholar
  54. Noto VH, Petit DJ (1972) Propylene glycol alginate. M. Co. German Pat. DE 2641303Google Scholar
  55. Okumura H et al (2001) Determination of sucrose fatty acid esters by high performance liquid chromatography. J Oleo Sci 50(4):249–254CrossRefGoogle Scholar
  56. Ortega J et al (2013) Biocatalytic synthesis of polyglycerol polyricinoleate: a comparison of different commercial lipases. Chem Biochem Eng Q 27(4):439–448Google Scholar
  57. Palacios LE, Wang T (2005) Egg-yolk lipid fractionation and lecithin characterization. J Am Oil Chem Soc 82(8):571–578CrossRefGoogle Scholar
  58. Paolucci-Jeaniean D (2005) Biomolecule applications for membrane-based phase contacting systems. Chem Eng Res Des 83(A3):302–308CrossRefGoogle Scholar
  59. Patterson VDE et al (1984) Continuous synthesis of glycerides by lipase in a microporous membrane bioreactor. Ann NY Acad Sci 434:558–568CrossRefGoogle Scholar
  60. Polouae J, Gelis A (1844). Ann Chem Phys 10:434Google Scholar
  61. Ranny M, et al. (1989) Manufacture of phosphorylated mono- and diaclglycerols for use as food emulsifiers. Czechoslovakia Pat. CS 256691 B1Google Scholar
  62. Reynold SRC, Chappel CJ (1998) Sucrose acetate isobutyrate (SAIB): historical aspects of its use in beverages and a review of toxicity studies prior to 1988. Food Chem Toxicol 36(2):81–93CrossRefGoogle Scholar
  63. Sahasrabuddhe MR, Chadha RK (1969) Chromatographic analysis of sorbitan fatty acid esters. J Am Oil Chem Soc 46(1):8–12CrossRefGoogle Scholar
  64. Sax NI, Lewis R (1999) Succinic anhydride. Dangerous properties of industrial materials, vol III. Van Nostrand Reinhold, New York, pp 3131–3132Google Scholar
  65. Schoerken U, et al. (2008) Preparation and use of monoglycerrides. US Pat. Appl. 20080045606Google Scholar
  66. Schuetze T (1977) Analytische Charakterisierung von Polyglycerinester-Emulgatoren. Nahrung 21(5):405–415CrossRefGoogle Scholar
  67. Schuyl PJW, Platerink V (1994) Analysis of sucrose polyesters with electrospray mass spectrometry42nd edn. A.S.M.S. Conference on Mass Spectrometry, Chicago, ILGoogle Scholar
  68. Shmidt AA et al (1976) Synthesis of lactylated monoglycerides. Masolzhironyaya Promyshlennost 10:19–20Google Scholar
  69. Sietze FG (1982). Seifen Oele Fette Wachse 108(20):637–639Google Scholar
  70. Sigfried P, Weidner E (2005) Process for the transesterification of fats and oils by means of alcoholysis. U. S. Pat 5,933 398 B2Google Scholar
  71. Song C l, Zhao XH (2013) The preparation of an oligochitosan-glycosylated and cross-linked caseinate obtained by a microbial transglutaminase and its functional properties. Int J Dairy Technol 67(1):110–166CrossRefGoogle Scholar
  72. Stockburger G (1981) Process for preparing Sorbitan esters. U. S. Pat 4 297 290, ICI Americas, Inc.Google Scholar
  73. Strong CH (1976) Alkylene glycol alginates. Ger. Pat. DE 2529086, Uniroyal Ltd.Google Scholar
  74. Swanson S, Swanson BG (1999) Alkyl and acyl sugars. In: Gunstone FD (ed) Lipid synthesis and manufacture. Academic Press/CRC Press, Sheffield, pp 347–370Google Scholar
  75. Szabo I, et al. (1977) Investigations on the new preparation possibilities of span 80 tween 80. Appl Chem. Budapest Magy, Kem EgyesuleteGoogle Scholar
  76. Szuhaj BF (2005) In: Shahidi F (ed) Lecithins bailey’s industrial oil and fat products, vol 3. Wiley, New York, pp 361–456Google Scholar
  77. Thompson, A., Boland, M., Harjinder Singh (2009). Milk proteins: from expression to food Amsterdam Elsevier/Academic PressGoogle Scholar
  78. Thum O, et al. (2009) Process for enzymatically preparing carboxylic esters. U. S. Pat. Appl. 12/354,163, Evonik Goldschmidt GmbH.Google Scholar
  79. Udajari S (1996) Ethylene oxide. The Merck index. Merck & Co., Whitehouse Station, NJ, p 1349Google Scholar
  80. Wagner FW, et al. (1990) Preparation of sucrose fatty acid esters having a degree of polymerization up to 2. U. S. Pat. 4,927,920, Nebraska Dept. of Economic DevelopmentGoogle Scholar
  81. Waldinger C, Schneider M (1996) Enzyme esterification of glycerol III: LIpase-catalyzed synthesis of regiomerically pure 1,3 and diglycerides and 1,3-rac-monoglyceridesl derived from unsaturated fatty acids. J Am Oil Chem Soc 73(11):1513–1519CrossRefGoogle Scholar
  82. Wee H et al (2013) Hierarchical zeolite imidazolate framework-8 catalyst for monoglyceride synthesis. ChemCatChem 5(12):3652–3656CrossRefGoogle Scholar
  83. Wilson DC (1999) Continuous process for the synthesis of sucrose fatty acid esters. U. S. Pat. 5 872 245, Optima Technologies GroupGoogle Scholar
  84. Yamane T et al (1984) Continuous synthesis of glycerides by lipase in a microporous membrane bioreactor. Ann N Y Acad Sci 434:558–568CrossRefGoogle Scholar
  85. Ye R, Hayes DG (2012) Lipase-catalyzed synthesis of saccharide-fatty acid esters utilizing solvent-free suspensions: effect of acyl donors and acceptors, and enzyme activity retention. J Am Oil Chem Soc 89:455–463CrossRefGoogle Scholar
  86. Ye R et al (2014) Effects of particle size of sucrose suspensions and pre-incubation of enzyme on lipase-catalyzed synthesis of sucrose oleic acid esters. J Am Oil Chem Soc 91:1891–1901CrossRefGoogle Scholar
  87. Yiiksel Z, Erdem YK (2009) Modification of bovine milk protein systems by transglutaminase. GIDA 34(6):345–350Google Scholar
  88. Yin W et al (2012) A casein-polysaccharide hybrid hydrogel cross-linked by transglutaminase for drug delivery. J Mater Sci 47:2045–2055CrossRefGoogle Scholar
  89. Zhao R et al (2014) Heterogeneous base-catalytic transesterification synthesis of sucrose esters and parallel reaction control. Int J Food Sci Technol 49(3):854–860CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Gerard L. Hasenhuettl
    • 1
  1. 1.Cheetahtech International, LLCPort Saint LucieUSA

Personalised recommendations