Advertisement

Role of Chemokines and Chemokine Receptors in Infectious Diseases and Targeting Strategies

  • Heena V. Maithania
  • Anisha A. D’Souza
  • Prajakta Dandekar
  • Padma V. DevarajanEmail author
Chapter
Part of the AAPS Advances in the Pharmaceutical Sciences Series book series (AAPS, volume 39)

Abstract

Chemokine receptors, a family of G-protein-coupled receptors (GPCRs), bind in a specific manner to chemokines and elicit cellular responses. Their involvement in inflammatory diseases is predominant. Although the main function of chemokine receptors is enrolment of leukocytes at the site of inflammation, they are also widely explored as drug discovery targets. This is due to the fact that blockage of chemokine receptor may provide novel therapeutic interventions. This chapter discusses the various chemokine receptors, involvement of chemokine receptors in the pathogenesis of various diseases, and receptor-mediated strategies to tackle such afflictions.

Keywords

Chemokines G protein-coupled receptor Receptor-mediated targeting Signaling Ligands Cytokines Transmembrane 

Abbreviations

ACKR

Atypical chemokine receptor

AIDS

Acquired immune deficiency syndrome

AS

Atherosclerosis

BLR1

Burkitt’s lymphoma receptor 1

cAMP

Cyclic adenosine monophosphate

CD4

Cluster of differentiation 4

CHO

Chinese hamster ovary

CM

Cerebral malaria

CNS

Central nervous system

COPD

Chronic obstructive pulmonary disease

DAG

Diacylglycerol

DARC

Duffy antigen receptor for chemokines

EBV

Epstein–Barr virus

ELC

EBI1 ligand chemokine

GCP

Granulocyte chemotactic Protein

GDP

Guanosine diphosphate

GPCR

G-protein-coupled receptors

GTP

Guanosine triphosphate

GvHD

Graft versus host disease

HCMV

Human cytomegalovirus

HIV

Human immunodeficiency virus

HIVE

HIV encephalitis

HSV

Herpes simplex virus

IBD

Inflammatory bowel disease

IC 50

inhibitory concentration 50

IFN

Interferon

IL-1/IL-8

Interleukin

I-TAC

interferon-inducible T-cell alpha chemoattractant

LPS

Lipopolysaccharide

MCP

Monocyte chemotactic/chemoattractant protein

MIG

monokine induced by gamma interferon

MIP1α/1β

Macrophage inflammatory protein

mRNA

Messenger ribonucleic acid

MTC

Medullary thyroid carcinomas

NAP

Neutrophil-activating peptide

NK

Natural killer

PIP2

Phosphatidylinositol 4, 5-biphosphate

PLC

Phospholipase C

PLGA

Polylactic-co-glycolic acid

PM

Placental malaria

PTC

Papillary thyroid carcinomas

RA

Rheumatoid arthritis

RANTES

Regulated on activation normal T-cell expressed and secreted

RR-MS

Relapsing–remitting multiple sclerosis

SDF

Stromal-derived Factor

SDP

Spirodiketopiperzine

SLC

Secondary lymphoid tissue chemokine

TECK

Thymus-expressed chemokine

Th2

T lymphocytes

TxP

Threonine x proline

WNV

West Nile virus

References

  1. 1.
    Solari R, Pease JE. Targeting chemokine receptors in disease – a case study of CCR4. Eur J Pharmacol. 2015;763:169–77.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Murphy PM. Chemokine receptors: structure, function and role in microbial pathogenesis. Cytokine Growth Factor Rev. 1996;7(1):47–64.PubMedCrossRefGoogle Scholar
  3. 3.
    Mahalingam S, Karupiah G. Chemokines and chemokine receptors in infectious diseases. Immunol Cell Biol. 1999;77(6):469–75.PubMedCrossRefGoogle Scholar
  4. 4.
    Gao J-L, Murphy PM. Human cytomegalovirus open reading frame US28 encodes a functional beta chemokine receptor. J Biol Chem. 1994;269(46):28539–42.PubMedGoogle Scholar
  5. 5.
    Mukaida N. The roles of cytokine receptors in diseases. Rinsho Byori Jpn J Clin Pathol. 2000;48(5):409–15.Google Scholar
  6. 6.
    Moser B, Willimann K. Chemokines: role in inflammation and immune surveillance. Ann Rheum Dis. 2004;63:ii84–i9.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Zlotnik A, Yoshie O. The chemokine superfamily revisited. Immunity. 2012;36(5):705–16.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Allen SJ, Crown SE, Handel TM. Chemokine: receptor structure, interactions, and antagonism. Annu Rev Immunol. 2007;25:787–820.PubMedCrossRefGoogle Scholar
  9. 9.
    Le Y, Zhou Y, Iribarren P, Wang J. Chemokines and chemokine receptors: their manifold roles in homeostasis and disease. Cell Mol Immunol. 2004;1(2):95–104.PubMedGoogle Scholar
  10. 10.
    Murdoch C, Finn A. Chemokine receptors and their role in inflammation and infectious diseases. Blood. 2000;95(10):3032–43.PubMedCrossRefGoogle Scholar
  11. 11.
    Biragyn A, Ruffini PA, Coscia M, Harvey LK, Neelapu SS, Baskar S, et al. Chemokine receptor-mediated delivery directs self-tumor antigen efficiently into the class II processing pathway in vitro and induces protective immunity in vivo. Blood. 2004;104(7):1961–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Koenen RR, Weber C. Therapeutic targeting of chemokine interactions in atherosclerosis. Nat Rev Drug Discov. 2010;9(2):141–53.PubMedCrossRefGoogle Scholar
  13. 13.
    Baggiolini M, Loetscher P, Moser B. Interleukin-8 and the chemokine family. Int J Immunopharmacol. 1995;17(2):103–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Murphy PM, editor. Neutrophil receptors for interleukin-8 and related CXC chemokines. Semin Hematol. 1997;34(4):311–8.Google Scholar
  15. 15.
    Ahuja SK, Murphy PM. The CXC chemokines growth-regulated oncogene (GRO) α, GROβ, GROγ, neutrophil-activating peptide-2, and epithelial cell-derived neutrophil-activating peptide-78 are potent agonists for the type B, but not the type A, human interleukin-8 receptor. J Biol Chem. 1996;271(34):20545–50.PubMedCrossRefGoogle Scholar
  16. 16.
    Kaplanski G, Farnarier C, Kaplanski S, Porat R, Shapiro L, Bongrand P, et al. Interleukin-1 induces interleukin-8 secretion from endothelial cells by a juxtacrine mechanism. Blood. 1994;84(12):4242–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Hashimoto S, Yoda M, Yamada M, Yanai N, Kawashima T, Motoyoshi K. Macrophage colony-stimulating factor induces interleukin-8 production in human monocytes. Exp Hematol. 1996;24(2):123–8.PubMedGoogle Scholar
  18. 18.
    Khandaker MH, Mitchell G, Xu L, Andrews JD, Singh R, Leung H, et al. Metalloproteinases are involved in lipopolysaccharide–and tumor necrosis factor–mediated regulation of CXCR1 and CXCR2 chemokine receptor expression. Blood. 1999;93(7):2173–85.PubMedCrossRefGoogle Scholar
  19. 19.
    Lloyd AR, Biragyn A, Johnston JA, Taub DD, Xu L, Michiel D, et al. Granulocyte-colony stimulating factor and lipopolysaccharide regulate the expression of interleukin 8 receptors on polymorphonuclear leukocytes. J Biol Chem. 1995;270(47):28188–92.PubMedCrossRefGoogle Scholar
  20. 20.
    Loetscher M, Gerber B, Loetscher P, Jones SA, Piali L, Clark-Lewis I, et al. Chemokine receptor specific for IP10 and mig: structure, function, and expression in activated T-lymphocytes. J Exp Med. 1996;184(3):963–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Groom JR, Luster AD. CXCR3 in T cell function. Exp Cell Res. 2011;317(5):620–31.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Hesselgesser J, Liang M, Hoxie J, Greenberg M, Brass LF, Orsini MJ, et al. Identification and characterization of the CXCR4 chemokine receptor in human T cell lines: ligand binding, biological activity, and HIV-1 infectivity. J Immunol. 1998;160(2):877–83.PubMedGoogle Scholar
  23. 23.
    Jourdan P, Abbal C, Nora N, Hori T, Uchiyama T, Vendrell J-P, et al. Cutting edge: IL-4 induces functional cell-surface expression of CXCR4 on human T Cells1. J Immunol. 1998;160(9):4153–7.PubMedGoogle Scholar
  24. 24.
    Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity. 2000;12(2):121–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Jones BA, Beamer M, Ahmed S. Fractalkine/CX3CL1: a potential new target for inflammatory diseases. Mol Interv. 2010;10(5):263–70.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Imai T, Hieshima K, Haskell C, Baba M, Nagira M, Nishimura M, et al. Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell. 1997;91(4):521–30.PubMedCrossRefGoogle Scholar
  27. 27.
    Fong AM, Robinson LA, Steeber DA, Tedder TF, Yoshie O, Imai T, et al. Fractalkine and CX3CR1 mediate a novel mechanism of leukocyte capture, firm adhesion, and activation under physiologic flow. J Exp Med. 1998;188(8):1413–9.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Chee MS, Satchwell SC, Preddie E, Weston KM, Barrell BG. Human cytomegalovirus encodes three G protein-coupled receptor homologues. Nature. 1990;344(6268):774–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Bartoli C, Civatte M, Pellissier JF, Figarella-Branger D. CCR2A and CCR2B, the two isoforms of the monocyte chemoattractant protein-1 receptor are up-regulated and expressed by different cell subsets in idiopathic inflammatory myopathies. Acta Neuropathol. 2001;102(4):385–92.PubMedGoogle Scholar
  30. 30.
    Charo IF, Ransohoff RM. The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med. 2006;354(6):610–21.PubMedCrossRefGoogle Scholar
  31. 31.
    Elsner J, Petering H, Kluthe C, Kimmig D, Smolarski R, Ponath P, et al. Eotaxin-2 activates chemotaxis-related events and release of reactive oxygen species via pertussis toxin-sensitive G proteins in human eosinophils. Eur J Immunol. 1998;28(7):2152–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Doranz BJ, Rucker J, Yi Y, Smyth RJ, Samson M, Peiper SC, et al. A dual-tropic primary HIV-1 isolate that uses fusin and the β-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell. 1996;85(7):1149–58.PubMedCrossRefGoogle Scholar
  33. 33.
    Daugherty BL, Siciliano SJ, DeMartino JA, Malkowitz L, Sirotina A, Springer MS. Cloning, expression, and characterization of the human eosinophil eotaxin receptor. J Exp Med. 1996;183(5):2349–54.PubMedCrossRefGoogle Scholar
  34. 34.
    Dairaghi DJ, Oldham ER, Bacon KB, Schall TJ. Chemokine receptor CCR3 function is highly dependent on local pH and ionic strength. J Biol Chem. 1997;272(45):28206–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Imai T, Baba M, Nishimura M, Kakizaki M, Takagi S, Yoshie O. The T cell-directed CC chemokine TARC is a highly specific biological ligand for CC chemokine receptor 4. J Biol Chem. 1997;272(23):15036–42.CrossRefGoogle Scholar
  36. 36.
    D’Ambrosio D, Iellem A, Bonecchi R, Mazzeo D, Sozzani S, Mantovani A, et al. Cutting edge: selective up-regulation of chemokine receptors CCR4 and CCR8 upon activation of polarized human type 2 Th cells. J Immunol. 1998;161(10):5111–5.PubMedGoogle Scholar
  37. 37.
    Ruffing N, Sullivan N, Sharmeen L, Sodroski J, Wu L. CCR5 has an expanded ligand-binding repertoire and is the primary receptor used by MCP-2 on activated T cells. Cell Immunol. 1998;189(2):160–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Raport CJ, Gosling J, Schweickart VL, Gray PW, Charo IF. Molecular cloning and functional characterization of a novel human CC chemokine receptor (CCR5) for RANTES, MIP-1β, and MIP-1α. J Biol Chem. 1996;271(29):17161–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Makuta Y, Sonoda Y, Yamamoto D, Funakoshi-Tago M, Aizu-Yokota E, Takebe Y, et al. Interleukin-10-induced CCR5 expression in macrophage like HL-60 cells: involvement of Erk1/2 and STAT-3. Biol Pharm Bull. 2003;26(8):1076–81.PubMedCrossRefGoogle Scholar
  40. 40.
    Baba M, Imai T, Nishimura M, Kakizaki M, Takagi S, Hieshima K, et al. Identification of CCR6, the specific receptor for a novel lymphocyte-directed CC chemokine LARC. J Biol Chem. 1997;272(23):14893–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Greaves DR, Wang W, Dairaghi DJ, Dieu MC, Saint-Vis B, Franz-Bacon K, et al. CCR6, a CC chemokine receptor that interacts with macrophage inflammatory protein 3alpha and is highly expressed in human dendritic cells. J Exp Med. 1997;186(6):837–44.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Liao F, Rabin RL, Smith CS, Sharma G, Nutman TB, Farber JM. CC-chemokine receptor 6 is expressed on diverse memory subsets of T cells and determines responsiveness to macrophage inflammatory protein 3 alpha. J Immunol. 1999;162(1):186–94.PubMedGoogle Scholar
  43. 43.
    Yoshida R, Imai T, Hieshima K, Kusuda J, Baba M, Kitaura M, et al. Molecular cloning of a novel human CC chemokine EBI1-ligand chemokine that is a specific functional ligand for EBI1, CCR7. J Biol Chem. 1997;272(21):13803–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Endres MJ, Garlisi CG, Xiao H, Shan L, Hedrick JA. The Kaposi’s sarcoma-related herpesvirus (KSHV)-encoded chemokine vMIP-I is a specific agonist for the CC chemokine receptor (CCR)8. J Exp Med. 1999;189(12):1993–8.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Horuk R, Hesselgesser J, Zhou Y, Faulds D, Halks-Miller M, Harvey S, et al. The CC chemokine I-309 inhibits CCR8-dependent infection by diverse HIV-1 strains. J Biol Chem. 1998;273(1):386–91.PubMedCrossRefGoogle Scholar
  46. 46.
    Carramolino L, Zaballos A, Kremer L, Villares R, Martin P, Ardavin C, et al. Expression of CCR9 beta-chemokine receptor is modulated in thymocyte differentiation and is selectively maintained in CD8(+) T cells from secondary lymphoid organs. Blood. 2001;97(4):850–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Vicari AP, Figueroa DJ, Hedrick JA, Foster JS, Singh KP, Menon S, et al. TECK: a novel CC chemokine specifically expressed by thymic dendritic cells and potentially involved in T cell development. Immunity. 1997;7(2):291–301.PubMedCrossRefGoogle Scholar
  48. 48.
    Zaballos A, Gutierrez J, Varona R, Ardavin C, Marquez G. Cutting edge: identification of the orphan chemokine receptor GPR-9-6 as CCR9, the receptor for the chemokine TECK. J Immunol. 1999;162(10):5671–5.PubMedGoogle Scholar
  49. 49.
    Graham GJ. D6 and the atypical chemokine receptor family: novel regulators of immune and inflammatory processes. Eur J Immunol. 2009;39(2):342–51.PubMedCrossRefGoogle Scholar
  50. 50.
    Nibbs RJ, Wylie SM, Yang J, Landau NR, Graham GJ. Cloning and characterization of a novel promiscuous human beta-chemokine receptor D6. J Biol Chem. 1997;272(51):32078–83.PubMedCrossRefGoogle Scholar
  51. 51.
    Szabo MC, Soo KS, Zlotnik A, Schall TJ. Chemokine class differences in binding to the Duffy antigen-erythrocyte chemokine receptor. J Biol Chem. 1995;270(43):25348–51.PubMedCrossRefGoogle Scholar
  52. 52.
    Horuk R. The Duffy antigen receptor for chemokines DARC/ACKR1. Front Immunol. 2015;6(279):1–3.Google Scholar
  53. 53.
    Suresh P, Wanchu A. Chemokines and chemokine receptors in HIV infection: role in pathogenesis and therapeutics. J Postgrad Med. 2006;52(3):210–7.PubMedGoogle Scholar
  54. 54.
    Cocchi F, DeVico AL, Garzino-Demo A, Arya SK, Gallo RC, Lusso P. Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science. 1995;270(5243):1811–5.PubMedCrossRefGoogle Scholar
  55. 55.
    Stone MJ, Hayward JA, Huang C, EHuma Z, Sanchez J. Mechanisms of regulation of the chemokine-receptor network. Int J Mol Sci. 2017;18(2)  https://doi.org/10.3390/ijms18020342.PubMedCentralCrossRefPubMedGoogle Scholar
  56. 56.
    Berger EA, Doms RW, Fenyo EM, Korber BT, Littman DR, Moore JP, et al. A new classification for HIV-1. Nature. 1998;391(6664):240.PubMedCrossRefGoogle Scholar
  57. 57.
    Simmons G, Wilkinson D, Reeves JD, Dittmar MT, Beddows S, Weber J, et al. Primary, syncytium-inducing human immunodeficiency virus type 1 isolates are dual-tropic and most can use either Lestr or CCR5 as coreceptors for virus entry. J Virol. 1996;70(12):8355–60.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Wu L, LaRosa G, Kassam N, Gordon CJ, Heath H, Ruffing N, et al. Interaction of chemokine receptor CCR5 with its ligands: multiple domains for HIV-1 gp120 binding and a single domain for chemokine binding. J Exp Med. 1997;186(8):1373–81.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Bartels J, Maune S, Meyer JE, Kulke R, Schluter C, Rowert J, et al. Increased eotaxin-mRNA expression in non-atopic and atopic nasal polyps: comparison to RANTES and MCP-3 expression. Rhinology. 1997;35(4):171–4.PubMedGoogle Scholar
  60. 60.
    von Hundelshausen P, Weber KS, Huo Y, Proudfoot AE, Nelson PJ, Ley K, et al. RANTES deposition by platelets triggers monocyte arrest on inflamed and atherosclerotic endothelium. Circulation. 2001;103(13):1772–7.CrossRefGoogle Scholar
  61. 61.
    Greenwood B. Malaria mortality and morbidity in Africa. Bull World Health Organ. 1999;77(8):617–8.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Dunst J, Kamena F, Matuschewski K. Cytokines and chemokines in cerebral malaria pathogenesis. Front Cell Infect Microbiol. 2017;7(324):1–16.Google Scholar
  63. 63.
    Belnoue E, Costa FT, Vigario AM, Voza T, Gonnet F, Landau I, et al. Chemokine receptor CCR2 is not essential for the development of experimental cerebral malaria. Infect Immun. 2003;71(6):3648–51.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Sarfo BY, Armah HB, Irune I, Adjei AA, Olver CS, Singh S, et al. Plasmodium yoelii 17XL infection up-regulates RANTES, CCR1, CCR3 and CCR5 expression, and induces ultrastructural changes in the cerebellum. Malar J. 2005;4(63):1–13.Google Scholar
  65. 65.
    Chaisavaneeyakorn S, Moore JM, Mirel L, Othoro C, Otieno J, Chaiyaroj SC, et al. Levels of macrophage inflammatory protein 1 alpha (MIP-1 alpha) and MIP-1 beta in intervillous blood plasma samples from women with placental malaria and human immunodeficiency virus infection. Clin Diagn Lab Immunol. 2003;10(4):631–6.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Chandramohan D, Greenwood BM. Is there an interaction between human immunodeficiency virus and Plasmodium falciparum? Int J Epidemiol. 1998;27(2):296–301.PubMedCrossRefGoogle Scholar
  67. 67.
    Clark C, Phillips R. Cerebral malaria protection in mice by species-specific Plasmodium coinfection is associated with reduced CC chemokine levels in the brain. Parasite Immunol. 2011;33(11):637–41.PubMedCrossRefGoogle Scholar
  68. 68.
    Feng Y, Broder CC, Kennedy PE, Berger EA. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science. 1996;272(5263):872–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Hansen DS, Bernard NJ, Nie CQ, Schofield L. NK cells stimulate recruitment of CXCR3+ T cells to the brain during Plasmodium berghei-mediated cerebral malaria. J Immunol. 2007;178(9):5779–88.PubMedCrossRefGoogle Scholar
  70. 70.
    Hochman S, Kim K. The impact of HIV coinfection on cerebral malaria pathogenesis. J Neuroparasitol. 2012;3:235547.CrossRefGoogle Scholar
  71. 71.
    Ochiel DO, Awandare GA, Keller CC, Hittner JB, Kremsner PG, Weinberg JB, et al. Differential regulation of β-chemokines in children with Plasmodium falciparum malaria. Infect Immun. 2005;73(7):4190–7.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Pollina E, Chaluluka E, Carr R, Lucas S, Molyneaux M, Rogerson S. Monocytic infiltration of the placenta in malaria and its relation to HIV. Am J Trop Med Hyg. 1999;61:1–11.Google Scholar
  73. 73.
    Sarfo B, Singh S, Lillard J, Quarshie A, Gyasi R, Armah H, et al. The cerebral-malaria-associated expression of RANTES, CCR3 and CCR5 in post-mortem tissue samples. Ann Trop Med Parasitol. 2004;98(3):297–303.PubMedCrossRefGoogle Scholar
  74. 74.
    Veillard NR, Kwak B, Pelli G, Mulhaupt F, James RW, Proudfoot AE, et al. Antagonism of RANTES receptors reduces atherosclerotic plaque formation in mice. Circ Res. 2004;94(2):253–61.PubMedCrossRefGoogle Scholar
  75. 75.
    Boisvert WA, Curtiss LK, Terkeltaub RA. Interleukin-8 and its receptor CXCR2 in atherosclerosis. Immunol Res. 2000;21(2–3):129–37.PubMedCrossRefGoogle Scholar
  76. 76.
    Reape TJ, Groot PH. Chemokines and atherosclerosis. Atherosclerosis. 1999;147(2):213–25.PubMedCrossRefGoogle Scholar
  77. 77.
    Whitley RJ, Roizman B. Herpes simplex virus infections. Lancet. 2001;357(9267):1513–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Sorensen LN, Paludan SR. Blocking CC chemokine receptor (CCR) 1 and CCR5 during herpes simplex virus type 2 infection in vivo impairs host defence and perturbs the cytokine response. Scand J Immunol. 2004;59(3):321–33.PubMedCrossRefGoogle Scholar
  79. 79.
    Kopp SJ, Banisadr G, Glajch K, Maurer UE, Grunewald K, Miller RJ, et al. Infection of neurons and encephalitis after intracranial inoculation of herpes simplex virus requires the entry receptor nectin-1. Proc Natl Acad Sci U S A. 2009;106(42):17916–20.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Beisser PS, Laurent L, Virelizier J-L, Michelson S. Human Cytomegalovirus chemokine receptor gene US28 is transcribed in latently infected THP-1 monocytes. J Virol. 2001;75(13):5949–57.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Sanders VJ, Pittman CA, White MG, Wang G, Wiley CA, Achim CL. Chemokines and receptors in HIV encephalitis. AIDS. 1998;12(9):1021–6.PubMedCrossRefGoogle Scholar
  82. 82.
    Cheng W, Chen G. Chemokines and chemokine receptors in multiple sclerosis. Mediat Inflamm. 2014;2014:1–8.Google Scholar
  83. 83.
    Kaplan AP. Chemokines, chemokine receptors and allergy. Int Arch Allergy Immunol. 2001;124(4):423–31.PubMedCrossRefGoogle Scholar
  84. 84.
    Kufareva I, Salanga CL, Handel TM. Chemokine and chemokine receptor structure and interactions: implications for therapeutic strategies. Immunol Cell Biol. 2015;93(4):372–83.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Blanpain C, Lee B, Vakili J, Doranz BJ, Govaerts C, Migeotte I, et al. Extracellular cysteines of CCR5 are required for chemokine binding, but dispensable for HIV-1 coreceptor activity. J Biol Chem. 1999;274(27):18902–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Lagane B, Ballet S, Planchenault T, Balabanian K, Le Poul E, Blanpain C, et al. Mutation of the DRY motif reveals different structural requirements for the CC chemokine receptor 5-mediated signaling and receptor endocytosis. Mol Pharmacol. 2005;67(6):1966–76.PubMedCrossRefGoogle Scholar
  87. 87.
    Farzan M, Mirzabekov T, Kolchinsky P, Wyatt R, Cayabyab M, Gerard NP, et al. Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry. Cell. 1999;96(5):667–76.PubMedCrossRefGoogle Scholar
  88. 88.
    Jensen PC, Rosenkilde MM. Activation mechanisms of chemokine receptors. Methods Enzymol. 2009;461:171–90.PubMedCrossRefGoogle Scholar
  89. 89.
    Preininger AM, Hamm HE. G protein signaling: insights from new structures. Sci STKE. 2004;2004(218):re3.PubMedGoogle Scholar
  90. 90.
    Cabrera-Vera TM, Vanhauwe J, Thomas TO, Medkova M, Preininger A, Mazzoni MR, et al. Insights into G protein structure, function, and regulation. Endocr Rev. 2003;24(6):765–81.PubMedCrossRefGoogle Scholar
  91. 91.
    Bokoch GM. Chemoattractant signaling and leukocyte activation. Blood. 1995;86(5):1649–60.PubMedCrossRefGoogle Scholar
  92. 92.
    Wu D, LaRosa GJ, Simon MI. G protein-coupled signal transduction pathways for interleukin-8. Science. 1993;261(5117):101–3.PubMedCrossRefGoogle Scholar
  93. 93.
    Kuang Y, Wu Y, Jiang H, Wu D. Selective G protein coupling by CC chemokine receptors. J Biol Chem. 1996;271(8):3975–8.PubMedCrossRefGoogle Scholar
  94. 94.
    Lefkowitz RJ. Historical review: a brief history and personal retrospective of seven-transmembrane receptors. Trends Pharmacol Sci. 2004;25(8):413–22.PubMedCrossRefGoogle Scholar
  95. 95.
    Turner SJ, Domin J, Waterfield MD, Ward SG, Westwick J. The CC chemokine monocyte chemotactic peptide-1 activates both the class I p85/p110 phosphatidylinositol 3-kinase and the class II PI3K-C2α. J Biol Chem. 1998;273(40):25987–95.PubMedCrossRefGoogle Scholar
  96. 96.
    Huang R, Lian JP, Robinson D, Badwey JA. Neutrophils stimulated with a variety of chemoattractants exhibit rapid activation of p21-activated kinases (Paks): separate signals are required for activation and inactivation of paks. Mol Cell Biol. 1998;18(12):7130–8.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Mellado M, Rodriguez-Frade J, Aragay A, Del Real G, Martin A, Vila-Coro A, et al. The chemokine monocyte chemotactic protein 1 triggers Janus kinase 2 activation and tyrosine phosphorylation of the CCR2B receptor. J Immunol. 1998;161(2):805–13.PubMedGoogle Scholar
  98. 98.
    Gether U, Lin S, Ghanouni P, Ballesteros JA, Weinstein H, Kobilka BK. Agonists induce conformational changes in transmembrane domains III and VI of the β2 adrenoceptor. EMBO J. 1997;16(22):6737–47.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Arias DA, Navenot J-M, Zhang W-B, Broach J, Peiper SC. Constitutive activation of CCR5 and CCR2 induced by conformational changes in the conserved TXP motif in transmembrane helix 2. J Biol Chem. 2003;278(38):36513–21.CrossRefGoogle Scholar
  100. 100.
    Govaerts C, Blanpain C, Deupi X, Ballet S, Ballesteros JA, Wodak SJ, et al. The TXP motif in the second transmembrane helix of CCR5. A structural determinant of chemokine-induced activation. J Biol Chem. 2001;276(16):13217–25.PubMedCrossRefGoogle Scholar
  101. 101.
    Kamp M, Liu Y, Kortholt A. Function and regulation of heterotrimeric G proteins during chemotaxis. Int J Mol Sci. 2016;17(1):90.PubMedCentralCrossRefPubMedGoogle Scholar
  102. 102.
    Karnik SS, Gogonea C, Patil S, Saad Y, Takezako T. Activation of G-protein-coupled receptors: a common molecular mechanism. Trends Endocrinol Metab. 2003;14(9):431–7.PubMedCrossRefGoogle Scholar
  103. 103.
    Baldwin JM. Structure and function of receptors coupled to G proteins. Curr Opin Cell Biol. 1994;6(2):180–90.PubMedCrossRefGoogle Scholar
  104. 104.
    Pease JE, Wang J, Ponath PD, Murphy PM. The N-terminal extracellular segments of the chemokine receptors CCR1 and CCR3 are determinants for MIP-1α and eotaxin binding, respectively, but a second domain is essential for efficient receptor activation. J Biol Chem. 1998;273(32):19972–6.PubMedCrossRefGoogle Scholar
  105. 105.
    Wells TN, Power CA, Shaw JP, Proudfoot AE. Chemokine blockers–therapeutics in the making? Trends Pharmacol Sci. 2006;27(1):41–7.PubMedCrossRefGoogle Scholar
  106. 106.
    Olson WC, Rabut GE, Nagashima KA, Tran DN, Anselma DJ, Monard SP, et al. Differential inhibition of human immunodeficiency virus type 1 fusion, gp120 binding, and CC-chemokine activity by monoclonal antibodies to CCR5. J Virol. 1999;73(5):4145–55.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Cocchi F, DeVico AL, Garzino-Demo A, Arya SK, Gallo RC, Lusso P. Identification of RANTES, MIP-1α, and MIP-1β as the major HIV-suppressive factors produced by CD8+ T cells. Science. 1995;270(5243):1811–5.PubMedCrossRefGoogle Scholar
  108. 108.
    Simmons G, Clapham PR, Picard L, Offord RE, Rosenkilde MM, Schwartz TW, et al. Potent inhibition of HIV-1 infectivity in macrophages and lymphocytes by a novel CCR5 antagonist. Science. 1997;276(5310):276–9.PubMedCrossRefGoogle Scholar
  109. 109.
    Mack M, Luckow B, Nelson PJ, Cihak J, Simmons G, Clapham PR, et al. Aminooxypentane-RANTES induces CCR5 internalization but inhibits recycling: a novel inhibitory mechanism of HIV infectivity. J Exp Med. 1998;187(8):1215–24.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Doranz BJ, Grovit-Ferbas K, Sharron MP, Mao S-H, Goetz MB, Daar ES, et al. A small-molecule inhibitor directed against the chemokine receptor CXCR4 prevents its use as an HIV-1 coreceptor. J Exp Med. 1997;186(8):1395–400.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Alkhatib G, Combadiere C, Broder CC, Feng Y, Kennedy PE, Murphy PM, et al. CC CKR5: A RANTES, MIP-1α, MIP-1β receptor as a fusion cofactor for macrophage-tropic HIV-1. Science. 1996;272(5270):1955–8.PubMedCrossRefGoogle Scholar
  112. 112.
    Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, et al. Identification of a major co-receptor for primary isolates of HIV-1. Nature. 1996;381(6584):661.PubMedCrossRefGoogle Scholar
  113. 113.
    Neil SJ, Aasa-Chapman MM, Clapham PR, Nibbs RJ, McKnight A, Weiss RA. The promiscuous CC chemokine receptor D6 is a functional coreceptor for primary isolates of human immunodeficiency virus type 1 (HIV-1) and HIV-2 on astrocytes. J Virol. 2005;79(15):9618–24.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Kim S-S, Peer D, Kumar P, Subramanya S, Wu H, Asthana D, et al. RNAi-mediated CCR5 silencing by LFA-1-targeted nanoparticles prevents HIV infection in BLT mice. Mol Ther. 2010;18(2):370–6.PubMedCrossRefGoogle Scholar
  115. 115.
    Malavia NK, Zurakowski D, Schroeder A, Princiotto AM, Laury AR, Barash HE, et al. Liposomes for HIV prophylaxis. Biomaterials. 2011;32(33):8663–8.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Kish-Catalone T, Pal R, Parrish J, Rose N, Hocker L, Hudacik L, et al. Evaluation of-2 RANTES vaginal microbicide formulations in a nonhuman primate simian/human immunodeficiency virus (SHIV) challenge model. AIDS Res Hum Retrovir. 2007;23(1):33–42.PubMedCrossRefGoogle Scholar
  117. 117.
    Franquelim HG, De-Sousa FF, Veiga AS, Santos NC, Castanho MA. Cationic liposomes are possible drug-delivery systems for HIV fusion inhibitor sifuvirtide. Soft Matter. 2011;7(23):11089–92.CrossRefGoogle Scholar
  118. 118.
    Asin SN, Eszterhas SK, Rollenhagen C, Heimberg AM, Howell AL. HIV type 1 infection in women: increased transcription of HIV type 1 in ectocervical tissue explants. J Infect Dis. 2009;200(6):965–72.PubMedCrossRefGoogle Scholar
  119. 119.
    Kumar P, Ban H-S, Kim S-S, Wu H, Pearson T, Greiner DL, et al. T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell. 2008;134(4):577–86.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Ham AS, Cost MR, Sassi AB, Dezzutti CS, Rohan LC. Targeted delivery of PSC-RANTES for HIV-1 prevention using biodegradable nanoparticles. Pharm Res. 2009;26(3):502–11.PubMedCrossRefGoogle Scholar
  121. 121.
    Fumakia M, Yang S, Gu J, Ho EA. Protein/peptide-based entry/fusion inhibitors as anti-HIV therapies: challenges and future direction. Rev Med Virol. 2016;26(1):4–20.PubMedCrossRefGoogle Scholar
  122. 122.
    Vijayakumar S, Ganesan S. Gold nanoparticles as an HIV entry inhibitor. Curr HIV Res. 2012;10(8):643–6.PubMedCrossRefGoogle Scholar
  123. 123.
    Di Gianvincenzo P, Marradi M, Martínez-Ávila OM, Bedoya LM, Alcamí J, Penadés S. Gold nanoparticles capped with sulfate-ended ligands as anti-HIV agents. Bioorg Med Chem Lett. 2010;20(9):2718–21.PubMedCrossRefGoogle Scholar
  124. 124.
    Lara HH, Ixtepan-Turrent L, Treviño ENG, Singh DK. Use of silver nanoparticles increased inhibition of cell-associated HIV-1 infection by neutralizing antibodies developed against HIV-1 envelope proteins. J Nanobiotechnol. 2011;9(1):38.CrossRefGoogle Scholar
  125. 125.
    Majmudar MD, Keliher EJ, Heidt T, Leuschner F, Truelove J, Sena BF, et al. Monocyte-directed RNAi targeting CCR2 improves infarct healing in atherosclerosis-prone mice. Circulation. 2013;127(20):2038–46.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
  127. 127.
  128. 128.
  129. 129.
  130. 130.
  131. 131.
  132. 132.
  133. 133.
  134. 134.
  135. 135.
  136. 136.
    Gladue RP, Brown MF, Zwillich SH. CCR1 antagonists: what have we learned from clinical trials. Curr Top Med Chem. 2010;10:1268.PubMedCrossRefGoogle Scholar
  137. 137.
  138. 138.
  139. 139.
  140. 140.
  141. 141.
  142. 142.
  143. 143.

Copyright information

© American Association of Pharmaceutical Scientists 2019

Authors and Affiliations

  • Heena V. Maithania
    • 1
  • Anisha A. D’Souza
    • 2
  • Prajakta Dandekar
    • 3
  • Padma V. Devarajan
    • 3
    Email author
  1. 1.Department of Pharmaceutical Sciences &TechnologyInstitute of Chemical TechnologyMumbaiIndia
  2. 2.Piramal Enterprises Limited, Pharmaceutical R&DMumbaiIndia
  3. 3.Department of Pharmaceutical SciencesInsitute of Chemical Technology, Deemed University, Elite Status and Centre of Excellence, Government of MaharashtraMumbaiIndia

Personalised recommendations