Advertisement

Protocols for Cellular Evaluation of Targeted Drug Delivery Systems for Cancer and Infectious Diseases

  • Aakruti Kaikini
  • Vaibhavi Peshattiwar
  • Padma V. Devarajan
  • Prajakta DandekarEmail author
  • Sadhana SathayeEmail author
Chapter
Part of the AAPS Advances in the Pharmaceutical Sciences Series book series (AAPS, volume 39)

Abstract

The most critical stage in evaluation of a novel drug or its delivery system is assessment of its safety and efficacy. Traditionally, in vivo animal models were used for this assessment. However, due to growing ethical concerns in animal usage, these in vivo animal models have largely been replaced by cell-based assays. Cell-based assays offer several advantages which have been described in this section. This chapter describes in detail the protocols along with critical parameters for various cell-based assays which can be used for evaluation of targeted drug delivery systems for cancer and infectious diseases.

Keywords

Cell-based assays In vitro Cancer Infectious diseases 

Abbreviations

3H-T

3H-labeled thymidine

ATCC

American Type Culture Collection

bFGF

Basic fibroblast growth factor

BrdU

5-Bromo-2′-deoxyuridine

CAM

Chick embryo chorioallantoic membrane

cfu

Colony-forming units

CLSI

The Clinical and Laboratory Standards Institute

DMSO

Dimethyl sulfoxide

DTT

Dithiothreitol

EBM

Endothelial basal media

EDTA

Ethylenediaminetetraacetic acid

EGTA

(Ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid)

ESCMID

European Society of Clinical Microbiology and Infectious Diseases

FITC

Fluorescein isothiocyanate

FRET

Forster resonance energy transfer

HPLC

High performance liquid chromatography

HUVECs

Human umbilical vein endothelial cells

LC-MS

Liquid chromatography-mass spectrometry

MHB

Mueller–Hinton broth

MIC

Minimum inhibitory concentration

MTT

(3-[4,5-Dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide)

NDDS

Novel drug delivery system

PAE

Post antibiotic effect

PI

Propidium iodide

UV

Ultraviolet

VEGF

Vascular endothelial growth factor

References

  1. 1.
    Hughes JP, Rees S, Kalindjian SB, Philpott KL. Principles of early drug discovery. Br J Pharmacol. 2011;162(6):1239–49.CrossRefGoogle Scholar
  2. 2.
    Goldberg AM. Animals and alternatives: societal expectations and scientific need. Altern Lab Anim. 2004;32(6):545–51.CrossRefGoogle Scholar
  3. 3.
    Feng Y, Mitchison TJ, Bender A, Young DW, Tallarico JA. Multi-parameter phenotypic profiling: using cellular effects to characterize small-molecule compounds. Nat Rev Drug Discov. 2009;8(7):567–78.CrossRefGoogle Scholar
  4. 4.
    Clemons PA. Complex phenotypic assays in high-throughput screening. Curr Opin Chem Biol. 2004;8(3):334–8.CrossRefGoogle Scholar
  5. 5.
    van Meerloo JKG, Cloos J. Cell sensitivity assays: the MTT assay. Methods Mol Biol. 2011;731:237–45.CrossRefGoogle Scholar
  6. 6.
    Romar GA, Kupper TS, Divito SJ. Research techniques made simple: techniques to assess cell proliferation. J Invest Dermatol. 2016;136(1):e1–7.CrossRefGoogle Scholar
  7. 7.
    Terry NH, White RA. Flow cytometry after bromodeoxyuridine labeling to measure S and G2+M phase durations plus doubling times in vitro and in vivo. Nat Protoc. 2006;1(2):859–69.CrossRefGoogle Scholar
  8. 8.
    Nguyen M, Shing Y, Folkman J. Quantitation of angiogenesis and antiangiogenesis in the chick embryo chorioallantoic membrane. Microvasc Res. 1994;47(1):31–40.CrossRefGoogle Scholar
  9. 9.
    Hlushchuk R, Bronnimann D, Correa Shokiche C, Schaad L, Triet R, Jazwinska A, et al. Zebrafish caudal fin angiogenesis assay-advanced quantitative assessment including 3-way correlative microscopy. PLoS One. 2016;11(3):e0149281.CrossRefGoogle Scholar
  10. 10.
    Cao Z, Zheng L, Zhao J, Zhuang Q, Hong Z, Lin W. Anti-angiogenic effect of Livistona chinensis seed extract in vitro and in vivo. Oncol Lett. 2017;14(6):7565–70.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Nitiss JL, Soans E, Rogojina A, Seth A, Mishina M. Topoisomerase assays. Curr Protoc Pharmacol. 2012; Chapter 3:Unit 3;  https://doi.org/10.1002/0471141755.ph0303s57.
  12. 12.
    Pozarowski P, Darzynkiewicz Z. Analysis of cell cycle by flow cytometry. Methods Mol Biol. 2004;281:301–11.PubMedGoogle Scholar
  13. 13.
    Rieger AM, Nelson KL, Konowalchuk JD, Barreda DR. Modified annexin V/propidium iodide apoptosis assay for accurate assessment of cell death. J Vis Exp. 2011;(50)  https://doi.org/10.3791/2597.
  14. 14.
    Rehm M, Parsons MJ, Bouchier-Hayes L. Measuring caspase activity by Forster resonance energy transfer. Cold Spring Harb Protoc. 2015;2015(1):pdb prot082560.CrossRefGoogle Scholar
  15. 15.
    Muller C, Schubiger PA, Schibli R. In vitro and in vivo targeting of different folate receptor-positive cancer cell lines with a novel 99mTc-radiofolate tracer. Eur J Nucl Med Mol Imaging. 2006;33(10):1162–70.CrossRefGoogle Scholar
  16. 16.
    EUCAST. European Committee for Antimicrobial Susceptibility Testing (EUCAST). Clin Microbiol Infect. 2003;9(8):9–15.Google Scholar
  17. 17.
    Wayne P, CLSI. Performance standards for antimicrobial susceptibility testing. CLSI supplement M100. 29th ed. Wayne: Clinical and Laboratory Standards Institute; 2019.Google Scholar
  18. 18.
    Wiegand I, Hilpert K, Hancock RE. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008;3(2):163–75.CrossRefGoogle Scholar
  19. 19.
    Forry SP, Madonna MC, Lopez-Perez D, Lin NJ, Pasco MD. Automation of antimicrobial activity screening. AMB Express. 2016;6(1):20.CrossRefGoogle Scholar
  20. 20.
    Zhao DH, Yu Y, Zhou YF, Shi W, Deng H, Liu YH. Postantibiotic effect and postantibiotic sub-minimum inhibitory concentration effect of valnemulin against Staphylococcus aureus isolates from swine and chickens. Lett Appl Microbiol. 2014;58(2):150–5.CrossRefGoogle Scholar
  21. 21.
    Motyl M, Dorso K, Barrett J, Giacobbe R. Basic microbiological techniques used in antibacterial drug discovery. Curr Protoc Pharmacol. 2006; Chapter 13:Unit13A 3;  https://doi.org/10.1002/0471141755.ph13a03s31.

Copyright information

© American Association of Pharmaceutical Scientists 2019

Authors and Affiliations

  • Aakruti Kaikini
    • 1
  • Vaibhavi Peshattiwar
    • 1
  • Padma V. Devarajan
    • 2
  • Prajakta Dandekar
    • 2
    Email author
  • Sadhana Sathaye
    • 1
    Email author
  1. 1.Department of Pharmaceutical Sciences & TechnologyInstitute of Chemical TechnologyMumbaiIndia
  2. 2.Department of Pharmaceutical SciencesInsitute of Chemical Technology, Deemed University, Elite Status and Centre of Excellence, Government of MaharashtraMumbaiIndia

Personalised recommendations