In Vitro and In Vivo Models for Cancer and Infectious Diseases

  • Vaibhavi Peshattiwar
  • Aakruti Kaikini
  • Prajakta DandekarEmail author
  • Padma V. Devarajan
  • Sadhana SathayeEmail author
Part of the AAPS Advances in the Pharmaceutical Sciences Series book series (AAPS, volume 39)


Preclinical evaluation of therapeutic molecules and their formulations is vital during drug discovery and development. These are also obligatory as a regulatory requirement. In vitro and in vivo studies serve as a powerful tool to obtain preliminary data regarding preclinical safety and efficacy of novel drugs and formulations as a precursor to clinical studies. The first step in preclinical evaluation includes in vitro tests, wherein novel drugs and formulations are evaluated through cell-based assays or using specific microorganisms. These are used for high-throughput screening of several entities to identify and shortlist candidates with promising efficacy and safety. Inhibitors to block specific endocytic pathways and methods to elucidate the endocytic pathway are also described. Such potential candidates are further evaluated in vivo using animal models closely resembling the human physiology and pathogenesis of the disease. This chapter reviews various in vitro and in vivo models for the analysis of drugs and formulations targeting two diseases which are leading causes of death globally, namely, cancer and infectious diseases which are the major focus of this book.


Cancer Infectious diseases Preclinical studies Nanoformulations Models 



Tritiated thymidine




Area under the concentration–time curve




Chorioallantoic membrane


Colony-forming unit


Peak concentration






Epidermal growth factor receptor




Epithelial to mesenchymal transition


Fluorescein isothiocyanate


Förster resonance energy transfer


Gas chromatography


Genetically engineered mouse models


Green fluorescent protein


High-performance liquid chromatography


Half maximal inhibitory concentration


Liquid chromatography–mass spectrometry


Minimum inhibitory concentration


Methicillin-resistant Staphylococcus aureus


(3-[4,5-Dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide)






Protective dose


Patient-derived orthotopic xenograft models


Pyrrolidine dithiocarbamate


Patient-derived xenograft model




Subcutaneous injection


  1. 1.
    Dhandapani M, Goldman A. Preclinical cancer models and biomarkers for drug development: new technologies and emerging tools. J Mol Biomark Diagn. 2017;8(5):356.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Cheon DJ, Orsulic S. Mouse models of cancer. Annu Rev Pathol. 2011;6:95–119.PubMedCrossRefGoogle Scholar
  3. 3.
    Katt ME, Placone AL, Wong AD, Xu ZS, Searson PC. In vitro tumor models: advantages, disadvantages, variables, and selecting the right platform. Front Bioeng Biotechnol. 2016;4:12.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Ruggeri BA, Camp F, Miknyoczki S. Animal models of disease: pre-clinical animal models of cancer and their applications and utility in drug discovery. Biochem Pharmacol. 2014;87(1):150–61.PubMedCrossRefGoogle Scholar
  5. 5.
    Shevach EM. Animal models for infectious diseases. Curr Protoc Immunol. 2011;93:19.0.1–4.Google Scholar
  6. 6.
    Beam TR Jr, Gilbert DN, Kunin CM. General guidelines for the clinical evaluation of anti-infective drug products. Infectious Diseases Society of America and the Food and Drug Administration. Clin Infect Dis. 1992;15 Suppl 1:S5–32.PubMedCrossRefGoogle Scholar
  7. 7.
    Knudsen JD, Frimodt-Møller N. Animal models in bacteriology. In: Schmidt A, Weber OF, editors. Animal testing in infectiology, Contributions to microbiology, vol. 9. Basel: Karger; 2001. p. 1–14.CrossRefGoogle Scholar
  8. 8.
    Zak O, O’Reilly T. Animal models in the evaluation of antimicrobial agents. Antimicrob Agents Chemother. 1991;35:1527–31.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Marra A, Girard D. Primary rodent infection models for testing antibacterial compound efficacy in vivo. Curr Protoc Pharmacol. 2005;31:13A.4.1–13A.4.13.Google Scholar
  10. 10.
    van Meerloo J, Kaspers G, Cloos J. Cell sensitivity assays: the MTT assay. Methods Mol Biol. 2011;731:237–45.PubMedCrossRefGoogle Scholar
  11. 11.
    Tolosa L, Donato MT, Gomez-Lechon MJ. General cytotoxicity assessment by means of the MTT assay. Methods Mol Biol. 2015;1250:333–48.PubMedCrossRefGoogle Scholar
  12. 12.
    Jones SK, Lizzio V, Merkel OM. Folate receptor targeted delivery of siRNA and paclitaxel to ovarian Cancer cells via Folate conjugated Triblock copolymer to overcome TLR4 driven chemotherapy resistance. Biomacromolecules. 2016;17(1):76–87.PubMedCrossRefGoogle Scholar
  13. 13.
    Muller C, Schubiger PA, Schibli R. In vitro and in vivo targeting of different folate receptor-positive cancer cell lines with a novel 99mTc-radiofolate tracer. Eur J Nucl Med Mol Imaging. 2006;33(10):1162–70.PubMedCrossRefGoogle Scholar
  14. 14.
    Godeshala S, Nitiyanandan R, Thompson B, Goklany S, Nielsen DR, Rege K. Folate receptor-targeted aminoglycoside-derived polymers for transgene expression in cancer cells. Bioeng Transl Med. 2016;1(2):220–31.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Chen G, Li D, Li J, Cao X, Wang J, Shi X, et al. Targeted doxorubicin delivery to hepatocarcinoma cells by lactobionic acid-modified laponite nanodisks. New J Chem. 2015;39(4):2847–55.CrossRefGoogle Scholar
  16. 16.
    Oh HR, Jo HY, Park JS, Kim DE, Cho JY, Kim PH, et al. Galactosylated liposomes for targeted co-delivery of doxorubicin/vimentin siRNA to hepatocellular carcinoma. Nanomaterials (Basel). 2016;6(8):141.CrossRefGoogle Scholar
  17. 17.
    Placzek M, Watrobska-Swietlikowska D, Stefanowicz-Hajduk J, Drechsler M, Ochocka JR, Sznitowska M. Comparison of the in vitro cytotoxicity among phospholipid-based parenteral drug delivery systems: emulsions, liposomes and aqueous lecithin dispersions (WLDs). Eur J Pharm Sci. 2019;127:92–101.PubMedCrossRefGoogle Scholar
  18. 18.
    Kang MG, Lee MY, Cha JM, Lee JK, Lee SC, Kim J, et al. Nanogels derived from fish gelatin: application to drug delivery system. Mar Drugs. 2019;17(4):246.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Catalano E. Targeted tumor drug delivery and magnetic hyperthermia for cancer treatment by chemotherapeutic-conjugated magnetic nanoparticles. 2018.Google Scholar
  20. 20.
    Zare-Zardini H, Taheri-Kafrani A, Amiri A, Bordbar AK. New generation of drug delivery systems based on ginsenoside Rh2-, lysine- and arginine-treated highly porous graphene for improving anticancer activity. Sci Rep. 2018;8(1):586.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Wang L, Qu M, Huang S, Fu Y, Yang L, He S, et al. A novel alpha-enolase-targeted drug delivery system for high efficacy prostate cancer therapy. Nanoscale. 2018;10(28):13673–83.PubMedCrossRefGoogle Scholar
  22. 22.
    Liu D, Liu Z, Wang L, Zhang C, Zhang N. Nanostructured lipid carriers as novel carrier for parenteral delivery of docetaxel. Colloids Surf B Biointerfaces. 2011;85(2):262–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Romar GA, Kupper TS, Divito SJ. Research techniques made simple: techniques to assess cell proliferation. J Invest Dermatol. 2016;136(1):e1–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Nowakowski RS, Lewin SB, Miller MW. Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNA-synthetic phase for an anatomically defined population. J Neurocytol. 1989;18(3):311–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Yang Y, Geldmacher DS, Herrup K. DNA replication precedes neuronal cell death in Alzheimer’s disease. J Neurosci. 2001;21(8):2661–8.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    He W, Jiang X, Zhang ZR. Preparation and evaluation of poly-butylcyanoacrylate nanoparticles for oral delivery of thymopentin. J Pharm Sci. 2008;97(6):2250–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Patra CR, Bhattacharya R, Mukherjee P. Fabrication and functional characterization of goldnanoconjugates for potential application in ovarian cancer. J Mater Chem. 2010;20(3):547–54.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Ahmad I, Allen TM. Antibody-mediated specific binding and cytotoxicity of liposome-entrapped doxorubicin to lung cancer cells in vitro. Cancer Res. 1992;52(17):4817–20.PubMedGoogle Scholar
  29. 29.
    Wongwanakul R, Jianmongkol S, Gonil P, Sajomsang W, Maniratanachote R, Aueviriyavit S. Biocompatibility study of quaternized chitosan on the proliferation and differentiation of Caco-2 cells as an in vitro model of the intestinal barrier. J Bioact Compat Polym. 2016;32(1):92–107.CrossRefGoogle Scholar
  30. 30.
    Coimbra M, Banciu M, Fens MH, de Smet L, Cabaj M, Metselaar JM, et al. Liposomal pravastatin inhibits tumor growth by targeting cancer-related inflammation. J Control Release. 2010;148(3):303–10.PubMedCrossRefGoogle Scholar
  31. 31.
    Kamba SA, Ismail M, Hussein-Al-Ali SH, Ibrahim TA, Zakaria ZA. In vitro delivery and controlled release of doxorubicin for targeting osteosarcoma bone cancer. Molecules. 2013;18(9):10580–98.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Rajabi M, Mousa SA. The role of angiogenesis in cancer treatment. Biomedicines. 2017;5(2):34.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Nishida N, Yano H, Nishida T, Kamura T, Kojiro M. Angiogenesis in cancer. Vasc Health Risk Manag. 2006;2(3):213–9.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Lokman NA, Elder AS, Ricciardelli C, Oehler MK. Chick chorioallantoic membrane (CAM) assay as an in vivo model to study the effect of newly identified molecules on ovarian cancer invasion and metastasis. Int J Mol Sci. 2012;13(8):9959–70.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Valdes TI, Kreutzer D, Moussy F. The chick chorioallantoic membrane as a novel in vivo model for the testing of biomaterials. J Biomed Mater Res. 2002;62(2):273–82.PubMedCrossRefGoogle Scholar
  36. 36.
    Giannopoulou E, Katsoris P, Hatziapostolou M, Kardamakis D, Kotsaki E, Polytarchou C, et al. X-rays modulate extracellular matrix in vivo. Int J Cancer. 2001;94(5):690–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Hlushchuk R, Bronnimann D, Correa Shokiche C, Schaad L, Triet R, Jazwinska A, et al. Zebrafish caudal fin angiogenesis assay-advanced quantitative assessment including 3-way correlative microscopy. PLoS One. 2016;11(3):e0149281.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Cao Z, Zheng L, Zhao J, Zhuang Q, Hong Z, Lin W. Anti-angiogenic effect of Livistona chinensis seed extract in vitro and in vivo. Oncol Lett. 2017;14(6):7565–70.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Burt HM, Jackson JK, Bains SK, Liggins RT, Oktaba AM, Arsenault AL, et al. Controlled delivery of taxol from microspheres composed of a blend of ethylene-vinyl acetate copolymer and poly(d,l-lactic acid). Cancer Lett. 1995;88(1):73–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Pastorino F, Brignole C, Di Paolo D, Nico B, Pezzolo A, Marimpietri D, et al. Targeting liposomal chemotherapy via both tumor cell-specific and tumor vasculature-specific ligands potentiates therapeutic efficacy. Cancer Res. 2006;66(20):10073–82.PubMedCrossRefGoogle Scholar
  41. 41.
    Miller K, Erez R, Segal E, Shabat D, Satchi-Fainaro R. Targeting bone metastases with a bispecific anticancer and antiangiogenic polymer-alendronate-taxane conjugate. Angew Chem Int Ed Engl. 2009;48(16):2949–54.PubMedCrossRefGoogle Scholar
  42. 42.
    Greish K, Ray A, Bauer H, Larson N, Malugin A, Pike D, et al. Anticancer and antiangiogenic activity of HPMA copolymer-aminohexylgeldanamycin-RGDfK conjugates for prostate cancer therapy. J Control Release. 2011;151(3):263–70.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Xue J, Zhao Z, Zhang L, Xue L, Shen S, Wen Y, et al. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence. Nat Nanotechnol. 2017;12(7):692–700.PubMedCrossRefGoogle Scholar
  44. 44.
    Nitiss JL, Soans E, Rogojina A, Seth A, Mishina M. Topoisomerase assays. Curr Protoc Pharmacol. 2012;Chapter 3:Unit 3.Google Scholar
  45. 45.
    Barret JM, Kruczynski A, Vispe S, Annereau JP, Brel V, Guminski Y, et al. F14512, a potent antitumor agent targeting topoisomerase II vectored into cancer cells via the polyamine transport system. Cancer Res. 2008;68(23):9845–53.PubMedCrossRefGoogle Scholar
  46. 46.
    Ye BL, Zheng R, Ruan XJ, Zheng ZH, Cai HJ. Chitosan-coated doxorubicin nano-particles drug delivery system inhibits cell growth of liver cancer via p53/PRC1 pathway. Biochem Biophys Res Commun. 2018;495(1):414–20.PubMedCrossRefGoogle Scholar
  47. 47.
    Parveen S, Sahoo SK. Long circulating chitosan/PEG blended PLGA nanoparticle for tumor drug delivery. Eur J Pharmacol. 2011;670(2–3):372–83.PubMedCrossRefGoogle Scholar
  48. 48.
    Jiang K, Chi T, Li T, Zheng G, Fan L, Liu Y, et al. A smart pH-responsive nano-carrier as a drug delivery system for the targeted delivery of ursolic acid: suppresses cancer growth and metastasis by modulating P53/MMP-9/PTEN/CD44 mediated multiple signaling pathways. Nanoscale. 2017;9(27):9428–39.PubMedCrossRefGoogle Scholar
  49. 49.
    Zheng S, Chang S, Lu J, Chen Z, Xie L, Nie Y, et al. Characterization of 9-nitrocamptothecin liposomes: anticancer properties and mechanisms on hepatocellular carcinoma in vitro and in vivo. PLoS One. 2011;6(6):e21064.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Rieger AM, Nelson KL, Konowalchuk JD, Barreda DR. Modified annexin V/propidium iodide apoptosis assay for accurate assessment of cell death. J Vis Exp. 2011; Apr 24 (50):pii: 2597.Google Scholar
  51. 51.
    Rehm M, Parsons MJ, Bouchier-Hayes L. Measuring caspase activity by Forster resonance energy transfer. Cold Spring Harb Protoc. 2015;2015(1):pdb prot082560.PubMedCrossRefGoogle Scholar
  52. 52.
    Khdair A, Handa H, Mao G, Panyam J. Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance in vitro. Eur J Pharm Biopharm. 2009;71(2):214–22.PubMedCrossRefGoogle Scholar
  53. 53.
    Shan L, Cui S, Du C, Wan S, Qian Z, Achilefu S, et al. A paclitaxel-conjugated adenovirus vector for targeted drug delivery for tumor therapy. Biomaterials. 2012;33(1):146–62.PubMedCrossRefGoogle Scholar
  54. 54.
    Foldbjerg R, Olesen P, Hougaard M, Dang DA, Hoffmann HJ, Autrup H. PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol Lett. 2009;190(2):156–62.PubMedCrossRefGoogle Scholar
  55. 55.
    Jia Y, Yuan M, Yuan H, Huang X, Sui X, Cui X, et al. Co-encapsulation of magnetic Fe3O4 nanoparticles and doxorubicin into biodegradable PLGA nanocarriers for intratumoral drug delivery. Int J Nanomedicine. 2012;7:1697–708.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Decker S, Sausville E. Perspectives on the history and evolution of tumor models. In: Teicher B, editor. Tumor models in cancer research. Cancer drug discovery and development. Totowa: Humana Press; 2011.Google Scholar
  57. 57.
    Porru M, Leonetti C. The role of mouse models in translational cancer research: present and future directions. Transl Med Rep. 2017;1:6598.CrossRefGoogle Scholar
  58. 58.
    Khan AQ, Siveen KS, Prabhu KS, Kuttikrishnan S, Akhtar S, Shanmugakonar M, Al-Naemi HA, Haris M, Uddin S. Role of animal research in human malignancies. In: Azmi A, Mohammad RM, editors. Animal models in cancer drug discovery. London, UK/Cambridge, MA: Academic Press; 2019. p. 1–29.Google Scholar
  59. 59.
    Jung J. Human tumor xenograft models for preclinical assessment of anticancer drug development. Toxicol Res. 2014;30(1):1–5.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Kim IY, Kang YS, Lee DS, Park HJ, Choi EK, Oh YK, Son HJ, Kim JS. Antitumor activity of EGFR targeted pH-sensitive immunoliposomes encapsulating gemcitabine in A549 xenograft nude mice. J Control Release. 2009;140(1):55–60.PubMedCrossRefGoogle Scholar
  61. 61.
    Kinoshita R, Ishima Y, Chuang VTG, Nakamura H, Fang J, Watanabe H, Shimizu T, Okuhira K, Ishida T, Maeda H, Otagiri M, Maruyama T. Improved anticancer effects of albumin-bound paclitaxel nanoparticle via augmentation of EPR effect and albumin-protein interactions using S-nitrosated human serum albumin dimer. Biomaterials. 2017;140:162–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Benny O, Fainaru O, Adini A, Cassiola F, Bazinet L, Adini I, Pravda E, Nahmias Y, Koirala S, Corfas G, D’Amato RJ, Folkman J. An orally delivered small-molecule formulation with antiangiogenic and anticancer activity. Nat Biotechnol. 2008;26(7):799–807.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Yang G, Yang T, Zhang W, Lu M, Ma X, Xiang G. In vitro and in vivo antitumor effects of folate-targeted ursolic acid stealth liposome. J Agric Food Chem. 2014;62(10):2207–15.PubMedCrossRefGoogle Scholar
  64. 64.
    Qiu W, Su GH. Development of orthotopic pancreatic tumor mouse models. Methods Mol Biol. 2013;980:215–23.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Zaman MS, Chauhan N, Yallapu MM, Gara RK, Maher DM, Kumari S, Sikander M, Khan S, Zafar N, Jaggi M, Chauhan SC. Curcumin nanoformulation for cervical cancer treatment. Sci Rep. 2016;6:20051.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Murakami M, Ernsting MJ, Undzys E, Holwell N, Foltz WD, Li SD. Docetaxel conjugate nanoparticles that target α-smooth muscle actin-expressing stromal cells suppress breast cancer metastasis. Cancer Res. 2013;73(15):4862–71.PubMedCrossRefGoogle Scholar
  67. 67.
    Rocks N, Bekaert S, Coia I, Paulissen G, Gueders M, Evrard B, Van Heugen JC, Chiap P, Foidart JM, Noel A, Cataldo D. Curcumin-cyclodextrin complexes potentiate gemcitabine effects in an orthotopic mouse model of lung cancer. Br J Cancer. 2012;107(7):1083–92.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Qiu M, Sun H, Meng F, Cheng R, Zhang J, Deng C, Zhong Z. Lipopepsomes: a novel and robust family of nano-vesicles capable of highly efficient encapsulation and tumor-targeted delivery of doxorubicin hydrochloride in vivo. J Control Release. 2018;28(272):107–13.CrossRefGoogle Scholar
  69. 69.
    Paweletz CP, Charboneau L, Liotta LA. Overview of metastasis assays. Curr Protoc Cell Biol. 2001;12:19.1.1–9.Google Scholar
  70. 70.
    Pearson HB, Pouliot N. Modeling metastasis in vivo. In: Madame curie bioscience database [internet]. Austin: Landes Bioscience; 2000–2013.
  71. 71.
    Gómez-Cuadrado L, Tracey N, Ma R, Qian B, Brunton VG. Mouse models of metastasis: progress and prospects. Dis Model Mech. 2017;10(9):1061–74.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Saxena M, Christofori G. Rebuilding cancer metastasis in the mouse. Mol Oncol. 2013;7(2):283–96.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Goddard ET, Fischer J, Schedin P. A portal vein injection model to study liver metastasis of breast cancer. J Vis Exp. 2016;118:e54903.Google Scholar
  74. 74.
    Thalheimer A, Otto C, Bueter M, Illert B, Gattenlohner S, Gasser M, Meyer D, Fein M, Germer CT, Waaga-Gasser AM. The intraportal injection model: a practical animal model for hepatic metastases and tumor cell dissemination in human colon cancer. BMC Cancer. 2009;9:29.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Zhang C, Lowery FJ, Yu D. Intracarotid cancer cell injection to produce mouse models of brain metastasis. J Vis Exp. 2017;120:e55085.Google Scholar
  76. 76.
    Ernsting MJ, Murakami M, Undzys E, Aman A, Press B, Li SD. A docetaxel-carboxymethylcellulose nanoparticle outperforms the approved taxane nanoformulation, Abraxane, in mouse tumor models with significant control of metastases. J Control Release. 2012;162(3):575–81.PubMedCrossRefGoogle Scholar
  77. 77.
    Berlin Grace VM, Reji RM, Sundaram V. Enhanced expression of tumour suppressor RAR-β by DSPC nano-formulated lipo-ATRA in the lung of B16F10 cell-implanted C57BL6 mice and in A549 cells. Life Sci. 2017;184:10–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Sapra P, Moase EH, Ma J, Allen TM. Improved therapeutic responses in a xenograft model of human B lymphoma (Namalwa) for liposomal vincristine versus liposomal doxorubicin targeted via anti-CD19 IgG2a or Fab’ fragments. Clin Cancer Res. 2004;10(3):1100–11.PubMedCrossRefGoogle Scholar
  79. 79.
    Parhi P, Suklabaidya S, Kumar SS. Enhanced anti-metastatic and anti-tumorigenic efficacy of Berbamine loaded lipid nanoparticles in vivo. Sci Rep. 2017;7(1):5806.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Jung J, Seol HS, Chang S. The generation and application of patient-derived xenograft model for cancer research. Cancer Res Treat. 2018;50(1):1–10.PubMedCrossRefGoogle Scholar
  81. 81.
    Adeegbe DO, Liu Y. Patient-derived xenografts in oncology. In: Aref A, Barbie D, editors. Ex vivo engineering of the tumor microenvironment, Cancer drug discovery and development. Cham: Humana Press; 2017.Google Scholar
  82. 82.
    Hoffman RM. Patient-derived orthotopic xenografts: better mimic of metastasis than subcutaneous xenografts. Nat Rev Cancer. 2015;15(8):451–2.PubMedCrossRefGoogle Scholar
  83. 83.
    Ji X, Chen S, Guo Y, Li W, Qi X, Yang H, Xiao S, Fang G, Hu J, Wen C, Liu H, Han Z, Deng G, Yang Q, Yang X, Xu Y, Peng Z, Li F, Cai N, Li G, Huang R. Establishment and evaluation of four different types of patient-derived xenograft models. Cancer Cell Int. 2017;17:122.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Jain M, Gamage NH, Alsulami M, Shankar A, Achyut BR, Angara K, Rashid MH, Iskander A, Borin TF, Wenbo Z, Ara R, Ali MM, Lebedyeva I, Chwang WB, Guo A, Bagher-Ebadian H, Arbab AS. Intravenous formulation of HET0016 decreased human glioblastoma growth and implicated survival benefit in rat xenograft models. Sci Rep. 2017;7:41809.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Lin TY, Li Y, Liu Q, Chen JL, Zhang H, Lac D, Zhang H, Ferrara KW, Wachsmann-Hogiu S, Li T, Airhart S, deVere White R, Lam KS, Pan CX. Novel theranostic nanoporphyrins for photodynamic diagnosis and trimodal therapy for bladder cancer. Biomaterials. 2016;104:339–51.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Lin TY, Zhu Y, Li Y, Zhang H, Ma AH, Long Q, Keck J, Lam KS, Pan CX, Jonas BA. Daunorubicin-containing CLL1-targeting nanomicelles have anti-leukemia stem cell activity in acute myeloid leukemia. Nanomedicine. 2019;20:102004.PubMedCrossRefGoogle Scholar
  87. 87.
    Fusser M, Øverbye A, Pandya AD, Mørch Ý, Borgos SE, Kildal W, Snipstad S, Sulheim E, Fleten KG, Askautrud HA, Engebraaten O, Flatmark K, Iversen TG, Sandvig K, Skotland T, Mælandsmo GM. Cabazitaxel-loaded poly(2-ethylbutyl cyanoacrylate) nanoparticles improve treatment efficacy in a patient derived breast cancer xenograft. J Control Release. 2019;293:183–92.PubMedCrossRefGoogle Scholar
  88. 88.
    Wu X, Wang L, Qiu Y, Zhang B, Hu Z, Jin R. Cooperation of IRAK1/4 inhibitor and ABT-737 in nanoparticles for synergistic therapy of T cell acute lymphoblastic leukemia. Int J Nanomedicine. 2017;12:8025–34.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    HogenEsch H, Nikitin AY. Challenges in pre-clinical testing of anti-cancer drugs in cell culture and in animal models. J Control Release. 2012;164(2):183–6.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Becher OJ, Holland EC. Genetically engineered models have advantages over xenografts for preclinical studies. Cancer Res. 2006;66(7):3355–8, discussion 3358–9.PubMedCrossRefGoogle Scholar
  91. 91.
    Lum DH, Matsen C, Welm AL, Welm BE. Overview of human primary tumorgraft models: comparisons with traditional oncology preclinical models and the clinical relevance and utility of primary tumorgrafts in basic and translational oncology research. Curr Protoc Pharmacol. 2012;Chapter 14:Unit 14.22.Google Scholar
  92. 92.
    Meibohm B, Derendorf H. Pharmacokinetic/pharmacodynamic studies in drug product development. J Pharm Sci. 2002;91(1):18–31.PubMedCrossRefGoogle Scholar
  93. 93.
    Katsube T, Yano Y, Yamano Y, Munekage T, Kuroda N, Takano M. Pharmacokinetic-pharmacodynamic modeling and simulation for bactericidal effect in an in vitro dynamic model. J Pharm Sci. 2008;97(9):4108–17.PubMedCrossRefGoogle Scholar
  94. 94.
    White RL. What in vitro models of infection can and cannot do. Pharmacotherapy. 2001;21(11 Pt 2):292S–301S.PubMedCrossRefGoogle Scholar
  95. 95.
    Wiegand I, Hilpert K, Hancock RE. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008;3(2):163–75.PubMedCrossRefGoogle Scholar
  96. 96.
    EUCAST. European Committee for Antimicrobial Susceptibility Testing (EUCAST). Clin Microbiol Infect. 2003;9(8):9–15.Google Scholar
  97. 97.
    Motyl M, Dorso K, Barrett J, Giacobbe R. Basic microbiological techniques used in antibacterial drug discovery. Curr Protoc Pharmacol. 2006;Chapter 13:Unit13A 3.Google Scholar
  98. 98.
    Chen H, Li L, Liu Y, Wu M, Xu S, Zhang G, et al. In vitro activity and post-antibiotic effects of linezolid in combination with fosfomycin against clinical isolates of Staphylococcus aureus. Infect Drug Resist. 2018;11:2107–15.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Halwani M, Mugabe C, Azghani AO, Lafrenie RM, Kumar A, Omri A. Bactericidal efficacy of liposomal aminoglycosides against Burkholderia cenocepacia. J Antimicrob Chemother. 2007;60(4):760–9.PubMedCrossRefGoogle Scholar
  100. 100.
    Rukholm G, Mugabe C, Azghani AO, Omri A. Antibacterial activity of liposomal gentamicin against Pseudomonas aeruginosa: a time-kill study. Int J Antimicrob Agents. 2006;27(3):247–52.PubMedCrossRefGoogle Scholar
  101. 101.
    Drulis-Kawa Z, Gubernator J, Dorotkiewicz-Jach A, Doroszkiewicz W, Kozubek A. In vitro antimicrobial activity of liposomal meropenem against Pseudomonas aeruginosa strains. Int J Pharm. 2006;315(1–2):59–66.PubMedCrossRefGoogle Scholar
  102. 102.
    Gharib A, Faezizadeh Z, Godarzee M. In vitro and in vivo activities of ticarcillin-loaded nanoliposomes with different surface charges against Pseudomonas aeruginosa (ATCC 29248). Daru. 2012;20(1):41.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Azhdarzadeh M, Lotfipour F, Zakeri-Milani P, Mohammadi G, Valizadeh H. Anti-bacterial performance of azithromycin nanoparticles as colloidal drug delivery system against different gram-negative and gram-positive bacteria. Adv Pharm Bull. 2012;2(1):17–24.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Barwal I, Kumar R, Kateriya S, Dinda AK, Yadav SC. Targeted delivery system for cancer cells consist of multiple ligands conjugated genetically modified CCMV capsid on doxorubicin GNPs complex. Sci Rep. 2016;6:37096.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Diaz-Galvez KR, Teran-Saavedra NG, Burgara-Estrella AJ, Fernandez-Quiroz D, Silva-Campa E, Acosta-Elias M, et al. Specific capture of glycosylated graphene oxide by an asialoglycoprotein receptor: a strategic approach for liver-targeting. RSC Adv. 2019;9(18):9899–906.CrossRefGoogle Scholar
  106. 106.
    Huang G, Diakur J, Xu Z, Wiebe LI. Asialoglycoprotein receptor-targeted superparamagnetic iron oxide nanoparticles. Int J Pharm. 2008;360(1–2):197–203.PubMedCrossRefGoogle Scholar
  107. 107.
    Asthana GS, Asthana A, Kohli DV, Vyas SP. Mannosylated chitosan nanoparticles for delivery of antisense oligonucleotides for macrophage targeting. Biomed Res Int. 2014;2014:526391.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Choi CH, Alabi CA, Webster P, Davis ME. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc Natl Acad Sci U S A. 2010;107(3):1235–40.PubMedCrossRefGoogle Scholar
  109. 109.
    Pharmacological IAI. Inhibition of endocytic pathways: is it specific enough to be useful? In: Ivanov AI, editor. Exocytosis and endocytosis, Methods in molecular biology, vol. 440. Totowa: Humana Press; 2008.Google Scholar
  110. 110.
    Dutta D, Donaldson JG. Search for inhibitors of endocytosis: intended specificity and unintended consequences. Cell Logist. 2012;2(4):203–8.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Akinc A, Battaglia G. Exploiting endocytosis for nanomedicines. Cold Spring Harb Perspect Biol. 2013;5(11):a016980.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Chithrani BD, Ghazani AA, Chan WC. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006;6(4):662–8.CrossRefGoogle Scholar
  113. 113.
    Salatin S, Yari Khosroushahi A. Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles. J Cell Mol Med. 2017;21(9):1668–86.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Kou L, Sun J, Zhai Y, He Z. The endocytosis and intracellular fate of nanomedicines: implication for rational design. Asian J Pharm Sci. 2013;8(1):1–10.CrossRefGoogle Scholar
  115. 115.
    Li Z, Zhang Y, Zhu D, Li S, Yu X, Zhao Y, Ouyang X, Xie Z, Li L. Transporting carriers for intracellular targeting delivery via non-endocytic uptake pathways. Drug Deliv. 2017;24(sup1):45–55.PubMedGoogle Scholar
  116. 116.
    Collins TP, Bayliss R, Churchill GC, Galione A, Terrar DA. NAADP influences excitation-contraction coupling by releasing calcium from lysosomes in atrial myocytes. Cell Calcium. 2011;50(5):449–58.PubMedCrossRefGoogle Scholar
  117. 117.
    Brandenberger C, Mühlfeld C, Ali Z, Lenz AG, Schmid O, Parak WJ, Gehr P, Rothen-Rutishauser B. Quantitative evaluation of cellular uptake and trafficking of plain and polyethylene glycol-coated gold nanoparticles. Small. 2010;6(15):1669–78.PubMedCrossRefGoogle Scholar
  118. 118.
    Tang H, Chen H, Jia Y, Liu X, Han Z, Wang A, Liu Q, Li X, Feng X. Effect of inhibitors of endocytosis and NF-kB signal pathway on folate-conjugated nanoparticle endocytosis by rat Kupffer cells. Int J Nanomedicine. 2017;12:6937–47.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Sun J, Liu Y, Ge M, Zhou G, Sun W, Liu D, Liang XJ, Zhang J. A distinct endocytic mechanism of functionalized-silica nanoparticles in breast cancer stem cells. Sci Rep. 2017;7(1):16236.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Bannunah AM, Vllasaliu D, Lord J, Stolnik S. Mechanisms of nanoparticle internalization and transport across an intestinal epithelial cell model: effect of size and surface charge. Mol Pharm. 2014;11(12):4363–73.PubMedCrossRefGoogle Scholar
  121. 121.
    Garaiova Z, Strand SP, Reitan NK, Lélu S, Størset SØ, Berg K, Malmo J, Folasire O, Bjørkøy A, Davies CL. Cellular uptake of DNA-chitosan nanoparticles: the role of clathrin- and caveolae-mediated pathways. Int J Biol Macromol. 2012;51(5):1043–51.PubMedCrossRefGoogle Scholar
  122. 122.
    Zhao M, Lepak AJ, Andes DR. Animal models in the pharmacokinetic/pharmacodynamic evaluation of antimicrobial agents. Bioorg Med Chem. 2016;24(24):6390–400.PubMedCrossRefGoogle Scholar
  123. 123.
    Frimodt-meuer N. The mouse peritonitis model : present and future use. J Antimicrob Chemother. 1993;31 Suppl D:55–60.CrossRefGoogle Scholar
  124. 124.
    Yang X, Shi G, Guo J, Wang C, He Y. Exosome-encapsulated antibiotic against intracellular infections of methicillin-resistant Staphylococcus aureus. Int J Nanomedicine. 2018;13:8095–104.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Hong W, Liu L, Zhao Y, Liu Y, Zhang D, Liu M. Pluronic-based nano-self-assemblies of bacitracin a with a new mechanism of action for an efficient in vivo therapeutic effect against bacterial peritonitis. J Nanobiotechnology. 2018;16(1):66.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Puligujja P, Balkundi SS, Kendrick LM, Baldridge HM, Hilaire JR, Bade AN, Dash PK, Zhang G, Poluektova LY, Gorantla S, Liu XM, Ying T, Feng Y, Wang Y, Dimitrov DS, McMillan JM, Gendelman HE. Pharmacodynamics of long-acting folic acid-receptor targeted ritonavir-boosted atazanavir nanoformulations. Biomaterials. 2015;41:141–50.PubMedCrossRefGoogle Scholar
  127. 127.
    Zhou T, Su H, Dash P, Lin Z, Dyavar Shetty BL, Kocher T, Szlachetka A, Lamberty B, Fox HS, Poluektova L, Gorantla S, McMillan J, Gautam N, Mosley RL, Alnouti Y, Edagwa B, Gendelman HE. Creation of a nanoformulated cabotegravir prodrug with improved antiretroviral profiles. Biomaterials. 2018;151:53–65.PubMedCrossRefGoogle Scholar
  128. 128.
    Abdelghany SM, Quinn DJ, Ingram RJ, Gilmore BF, Donnelly RF, Taggart CC, Scott CJ. Gentamicin-loaded nanoparticles show improved antimicrobial effects towards Pseudomonas aeruginosa infection. Int J Nanomedicine. 2012;7:4053–63.PubMedPubMedCentralGoogle Scholar
  129. 129.
    Jacqueline C, Roquilly A, Desessard C, Boutoille D, Broquet A, Le Mabecque V, Amador G, Potel G, Caillon J, Asehnoune K. Efficacy of ceftolozane in a murine model of Pseudomonas aeruginosa acute pneumonia: in vivo antimicrobial activity and impact on host inflammatory response. J Antimicrob Chemother. 2013;68:177–83.PubMedCrossRefGoogle Scholar
  130. 130.
    Robbe A, Tassin A, Carpentier J, Declèves AE, Mekinda Ngono ZL, Nonclercq D, Legrand A. Intratracheal bleomycin aerosolization: the best route of administration for a scalable and homogeneous pulmonary fibrosis rat model? Biomed Res Int. 2015;2015:198418.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Kim B, Pang HB, Kang J, Park JH, Ruoslahti E, Sailor MJ. Immunogene therapy with fusogenic nanoparticles modulates macrophage response to Staphylococcus aureus. Nat Commun. 2018;9(1):1969.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Hussain S, Joo J, Kang J, Kim B, Braun GB, She ZG, Kim D, Mann AP, Mölder T, Teesalu T, Carnazza S, Guglielmino S, Sailor MJ, Ruoslahti E. Antibiotic-loaded nanoparticles targeted to the site of infection enhance antibacterial efficacy. Nat Biomed Eng. 2018;2(2):95–103.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Kwon EJ, Skalak M, Bertucci A, Braun G, Ricci F, Ruoslahti E, Sailor MJ, Bhatia SN. Porous silicon nanoparticle delivery of tandem peptide anti-infectives for the treatment of pseudomonas aeruginosa lung infections. Adv Mater. 2017;(35). Scholar
  134. 134.
    Shah PN, Lin LY, Smolen JA, Tagaev JA, Gunsten SP, Han DS, Heo GS, Li Y, Zhang F, Zhang S, Wright BD, Panzner MJ, Youngs WJ, Brody SL, Wooley KL, Cannon CL. Synthesis, characterization, and in vivo efficacy of shell cross-linked nanoparticle formulations carrying silver antimicrobials as aerosolized therapeutics. ACS Nano. 2013;7(6):4977–87.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Hu CJ, Chen YT, Fang ZS, Chang WS, Chen HW. Antiviral efficacy of nanoparticulate vacuolar ATPase inhibitors against influenza virus infection. Int J Nanomedicine. 2018;13:8579–93.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Velkov T, Bergen PJ, Lora-Tamayo J, Landersdorfer CB, Li J. PK/PD models in antibacterial development. Curr Opin Microbiol. 2013;16(5):573–9.PubMedCrossRefGoogle Scholar
  137. 137.
    Zak O, Sande MA. Handbook of animal models of infection. Experimental models in antimicrobial chemotherapy. London: Academic Press; 1999.Google Scholar
  138. 138.
    Mushtaq S, Khan JA, Rabbani F, Latif U, Arfan M, Yameen MA. Biocompatible biodegradable polymeric antibacterial nanoparticles for enhancing the effects of a third-generation cephalosporin against resistant bacteria. J Med Microbiol. 2017;66(3):318–27.PubMedCrossRefGoogle Scholar
  139. 139.
    Zaytseva-Zotova D, Zinchenko A, Levada T, Andreev D, Shilov Y, Safarova E, Troiano G, Zale S. Accurin(R) nanoparticles improve the therapeutic index of colistin in preclinical models of infection. Paper presented at 26th European Congress of Clinical Microbiology and Infectious Diseases, Amsterdam, 9–12 Apr 2016.Google Scholar
  140. 140.
    Payasi A, Ganguly K, Roy D, Sachdeva A, Chaudhary M, Chaudhary S, Aggarwal A. L0029 Pharmacodynamic assessment of VRT001-C (Oral ceftriaxone) vs. intravenous ceftriaxone against Escherichia coli in the neutropenic murine thigh infection model. Paper presented at 29th European Congress of Clinical Microbiology and Infectious Diseases, Amsterdam, 13–16 Apr 2019.Google Scholar
  141. 141.
    Hong W, Zhao Y, Guo Y, Huang C, Qiu P, Zhu J, Chu C, Shi H, Liu M. PEGylated self-assembled Nano-bacitracin a: probing the antibacterial mechanism and real-time tracing of target delivery in vivo. ACS Appl Mater Interfaces. 2018;10(13):10688–705.PubMedCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2019

Authors and Affiliations

  • Vaibhavi Peshattiwar
    • 1
  • Aakruti Kaikini
    • 1
  • Prajakta Dandekar
    • 2
    Email author
  • Padma V. Devarajan
    • 2
  • Sadhana Sathaye
    • 1
    Email author
  1. 1.Department of Pharmaceutical Sciences & TechnologyInstitute of Chemical Technology, MatungaMumbaiIndia
  2. 2.Department of Pharmaceutical SciencesInsitute of Chemical Technology, Deemed University, Elite Status and Centre of Excellence, Government of MaharashtraMumbaiIndia

Personalised recommendations