Mannose Receptor and Targeting Strategies

  • Priyanka Jahagirdar
  • Amit S. Lokhande
  • Prajakta Dandekar
  • Padma V. DevarajanEmail author
Part of the AAPS Advances in the Pharmaceutical Sciences Series book series (AAPS, volume 39)


The mannose family receptors are unique multidomain, multifunctional endocytic receptors belonging to the C-type lectin family. These receptors, although structurally similar, exhibit differential binding to discrete ligands. This chapter discusses such similarities and differences between the structures, ligands, the expression, and molecular trafficking among the members of mannose receptor family. Further, targeted drug delivery strategies in infections and cancer to the most widely investigated receptor of the family, the mannose receptor, are comprehensively explained with examples.


Mannose receptor family Mannose conjugates Nanoparticles Liposomes Vaccines Infections Cancer 



Cluster of differentiation


C-type lectin domain


Dendritic cells


Dehydration–rehydration vesicle


Human Immunodeficiency Virus










Matrix metalloproteinases


Magnetic resonance imaging




Polyethylene glycol


Phospholipase A2


Poly (lactide-co-glycolide)


Reticuloendothelial system


Soluble leishmanial antigen


Superparamagnetic iron oxide nanoparticles


Tumor-associated macrophages




  1. 1.
    Zelensky AN, Gready JE. The C-type lectin-like domain superfamily. FEBS J. 2005;272(24):6179–217.PubMedCrossRefGoogle Scholar
  2. 2.
    East L, Isacke CM. The mannose receptor family. Biochimica et Biophysica Acta (BBA)-General Subjects. 2002;1572(2–3):364–86.CrossRefGoogle Scholar
  3. 3.
    Irache JM, Salman HH, Gamazo C, Espuelas S. Mannose-targeted systems for the delivery of therapeutics. Expert Opin Drug Deliv. 2008;5(6):703–24.PubMedCrossRefGoogle Scholar
  4. 4.
    Azad AK, Rajaram MVS, Schlesinger S. Exploitation of the macrophage mannose receptor (CD206) in infectious disease diagnostics and therapeutics. J Cytol Mol Biol. 2007;137(12):2696–700.Google Scholar
  5. 5.
    Ancian P, Lambeau G, Mattéi MG, Lzadunski M. The human 180-kDa receptor for secretory phospholipases A2. J Biol Chem. 1995;270(15):8963–70.PubMedCrossRefGoogle Scholar
  6. 6.
    Behrendt N, Jensen ON, Engelholm LH, Mørtz E, Mann M, Danø K. A urokinase receptor-associated protein with specific collagen binding properties. J Biol Chem. 2002;275(3):1993–2002.CrossRefGoogle Scholar
  7. 7.
    Sheikh H, Yarwood H, Ashworth A, Isacke CM. Endo180, an endocytic recycling glycoprotein related to the macrophage mannose receptor is expressed on fibroblasts, endothelial cells and macrophages and functions as a lectin receptor. J Cell Sci. 2000;113:1021–32.PubMedGoogle Scholar
  8. 8.
    Jiang W, Swiggard WJ, Heufler C, Peng M, Mirza A, Nussenzweig M, Steinman RM. The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature. 1995;375:151–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Simpson DZ, Hitchen PG, Elmhirst EL, Taylor ME. Multiple interactions between pituitary hormones and the mannose receptor. Biochem J. 1999;343(2):403–11.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Leteux BC, Chai W, Loveless RW, Yuen C, Uhlin-hansen L, Combarnous Y, et al. The cysteine-rich domain of the macrophage mannose receptor is a multispecific lectin that recognizes chondroitin sulfates A and B and sulfated oligosaccharides of blood group Lewis a and Lewis x types in addition to the sulfated n-glycans of lutropin. J Exp Med. 2000;191(7):1117–26.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Crocker PR, Da Silva R, Holmes N, Colominas C, Rudd P, Dwek R, et al. Cell-specific glycoforms of sialoadhesin and CD45 are counter-receptors for the cysteine-rich domain of the mannose receptor. J Biol Chem. 1999;274(49):35211–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Liu BY, Chirino AJ, Misulovin Z, Leteux C, Feizi T, Nussenzweig MC, et al. Crystal structure of the cysteine-rich domain of mannose receptor complexed with a sulfated carbohydrate ligand. J Exp Med. 2000;191(7):1105–15.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Morgunova E, Tuuttila A, Bergmann U, Isupov M, Lindqvist Y, Schneider G, Tryggvason K. Structure of human pro-matrix metalloproteinase-2: activation mechanism revealed. Science. 1999;284:1667–70.PubMedCrossRefGoogle Scholar
  14. 14.
    Pickford AR, Potts JR, Bright JR, Phan I, Campbell ID. Solution structure of a type 2 module from fibronectin : implications for the structure and function of the gelatin-binding domain. Structure. 1997;5(3):359–70.PubMedCrossRefGoogle Scholar
  15. 15.
    Hu Z, Shi X, Yu B, Li N, Huang Y, He Y. Structural insights into the pH-dependent conformational change and collagen recognition of the human mannose receptor. Structure. 2018;26:60–71.PubMedCrossRefGoogle Scholar
  16. 16.
    Napper CE, Drickamer K, Taylor ME. Collagen binding by the mannose receptor mediated through the fibronectin type II domain. Biochem J. 2006;395:579–86.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Napper CE, Dyson MH, Taylor ME. An extended conformation of the macrophage mannose receptor. J Biol Chem. 2001;276(18):14759–66.PubMedCrossRefGoogle Scholar
  18. 18.
    Stahl PD. The macrophage mannose receptor: current status. Am J Respir Cell Mol Biol. 1990;2(4):317–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Howard MJ, Isacke CM. The C-type lectin receptor Endo180 displays internalization and recycling properties distinct from other members of the mannose receptor family. J Biol Chem. 2002;277(35):32320–31.PubMedCrossRefGoogle Scholar
  20. 20.
    Mahnke K, Guo M, Lee S, Sepulveda H, Swain SL, Nussenzweig M, et al. The dendritic cell receptor for endocytosis, DEC-205, can recycle and enhance antigen presentation via major histocompatibility complex class II-positive lysosomal compartments. J Cell Biol. 2000;151(3):673–83.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Aderem A, Underhill DM. Mechanisms of phagocytosis in macrophages. Annu Rev Immunol. 1999;17(1):593–623.PubMedCrossRefGoogle Scholar
  22. 22.
    Wileman TE, Lennartz MR, Stahl PD. Identification of the macrophage mannose receptor as a 175-kDa membrane protein. Proc Natl Acad Sci. 1986;83(8):2501–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Linehan SA, Weber R, McKercher S, Ripley RM, Gordon S, Martin P. Enhanced expression of the mannose receptor by endothelial cells of the liver and spleen microvascular beds in the macrophage-deficient PU.1 null mouse. Histochem Cell Biol. 2005;123(4–5):365–76.PubMedCrossRefGoogle Scholar
  24. 24.
    Groger M, Holnthoner W, Maurer D, Lechleitner S, Wolff K, Mayr BB, et al. Dermal microvascular endothelial cells express the 180-kDa macrophage mannose receptor in situ and in vitro. J Immunol. 2000;165(10):5428–34.PubMedCrossRefGoogle Scholar
  25. 25.
    Mulay SR, Desai J, Kumar SV, Eberhard JN, Thomasova D, Romoli S, et al. Kaposi’s sarcoma cells express the macrophage-associated antigen mannose receptor and develop in peripheral blood cultures of Kaposi’s sarcoma patients. Am J Pathol. 1997;150(3):929–38.Google Scholar
  26. 26.
    Szolnoky G, Bata-Csörgö Z, Kenderessy AS, Kiss M, Pivarcsi A, Novák Z, et al. A mannose-binding receptor is expressed on human keratinocytes and mediates killing of Candida albicans. J Investig Dermatol. 2001;117(2):205–13.PubMedCrossRefGoogle Scholar
  27. 27.
    Wilt ST, Greaton CJ, Lutz DA, McLaughin B. Mannose receptor is expressed in normal and dystrophic retinal pigment epithelium. Exp Eye Res. 1999;69(4):405–11.PubMedCrossRefGoogle Scholar
  28. 28.
    Astarie-Dequeker C, N’Diaye EN, Le Cabec V, Rittig MG, Prandi J, Maridonneau-Parini I. The mannose receptor mediates uptake of pathogenic and nonpathogenic mycobacteria and bypasses bactericidal responses in human macrophages. Infect Immun. 1999;67(2):469–77.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Stahl PD, Ezekowitz RAB. The mannose receptor is a pattern recognition receptor involved in host defense. Curr Opin Immunol. 1998;10(1):50–5.PubMedCrossRefGoogle Scholar
  30. 30.
    Ailavena P, Chieppa MMP, Piemonti L. From pattern recognition receptor to regulator of homeostasis: the double-faced macrophage mannose receptor. Crit Rev Immunol. 2004;24(3):179–92.CrossRefGoogle Scholar
  31. 31.
    Stahl PD. The mannose receptor and other macrophage lectins. Curr Opin Immunol. 1992;4(1):49–52.PubMedCrossRefGoogle Scholar
  32. 32.
    Mokoena T, Gordon S. Modulation of mannosyl, fucosyl receptor activity in vitro by lymphokines, gamma and alpha interferons, and dexamethasone. J Clin Invest. 1985;75(2):624–31.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Shepherds VL, Konish G, Stahl P. Dexamethasone increases expression of mannose receptors and decreases extracellular lysosomal enzyme accumulation in macrophages. J Biol Chem. 1985;260(1):160–4.Google Scholar
  34. 34.
    Clohisy DR, Bar-shavitsb Z, Chappel JC, Teitelbaum LI. 1,25-dihydroxyvitamin D3 modulates bone marrow macrophage precursor proliferation and differentiation. J Biol Chem. 1987;262(33):15922–9.PubMedGoogle Scholar
  35. 35.
    Schreiber S, Blumt JS, Chappel JC, Stenson WF, Stahlt PD, Teitelbaum SL, et al. Prostaglandin E specifically upregulates the expression of the mannose-receptor on mouse. Cell Regul. 1990;1(5):403–13.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Shepherd VL, Abdolrasulnia RA, Garrett M, Cowan HB. Down-regulation of mannose receptor activity in macrophages after treatment with lipopolysaccharide and phorbol esters. J Immunol. 1990;145(5):1530–6.PubMedGoogle Scholar
  37. 37.
    Schreiber S, Stenson WF, MacDermott RP, Chappel JC, Teitelbaum SL, Perkins SL. Aggregated bovine IgG inhibits mannose receptor expression of murine bone marrow-derived macrophages via activation. J Immunol. 1991;147(4):1377–82.PubMedGoogle Scholar
  38. 38.
    Taylor-Papadimitriou J, Burchell J, Miles DW, Dalziel M. MUC1 and cancer. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 1999;1455(2–3):301–13.CrossRefGoogle Scholar
  39. 39.
    Nath S, Mukherjee P. MUC1: a multifaceted oncoprotein with a key role in cancer progression. Trends Mol Medicine. 2017;20(6):332–42.CrossRefGoogle Scholar
  40. 40.
    Lau SK, Weiss LM, Chu PG. Differential expression of MUC1, MUC2, and MUC5AC in carcinomas of various sites: an immunohistochemical study. Am J Clin Pathol. 2004;122(1):61–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Taylor PR, Gordon S, Martinez-Pomares L. The mannose receptor: linking homeostasis and immunity through sugar recognition. Trends Immunol. 2005;26(2):104–10.PubMedCrossRefGoogle Scholar
  42. 42.
    Roseman DS, Baenziger JU. Molecular basis of lutropin recognition by the mannose/GalNAc-4-SO4 receptor. Proc Natl Acad Sci. 2000;97(18):9949–54.PubMedCrossRefGoogle Scholar
  43. 43.
    Fiete DJ, Beranek MC, Baenziger JU. A cysteine-rich domain of the “mannose” receptor mediates GalNAc-4-SO4 binding. Proc Natl Acad Sci. 1998;95(5):2089–93.PubMedCrossRefGoogle Scholar
  44. 44.
    Schlesinger LS, Hull SR, Kaufman TM. Binding of the terminal mannosyl units of lipoarabinomannan from a virulent strain of Mycobacterium tuberculosis to human macrophages. J Immunol. 1994;152(8):4070–9.PubMedGoogle Scholar
  45. 45.
    Wilson ME, Pearson RD. Evidence that Leishmania donovani utilizes a mannose receptor on human mononuclear phagocytes to establish intracellular parasitism. J Immunol. 1986;136(12):4681–8.PubMedGoogle Scholar
  46. 46.
    Kahn S, Wleklinski M, Aruffo A, Farr A, Coder D, Kahn M. Trypanosoma cruzi amastigote adhesion to macrophages is facilitated by the mannose receptor. J Exp Med. 2004;182(5):1243–58.CrossRefGoogle Scholar
  47. 47.
    Gruden-Movsesijan A, Milosavljevic LS. The involvement of the macrophage mannose receptor in the innate immune response to infection with parasite Trichinella spiralis. Vet Immunol Immunopathol. 2006;109(1–2):57–67.PubMedCrossRefGoogle Scholar
  48. 48.
    Macedo-Ramos H, Campos FSO, Carvalho LA, Ramos IB, Teixeira LM, De Souza W, et al. Olfactory ensheathing cells as putative host cells for Streptococcus pneumoniae: evidence of bacterial invasion via mannose receptor-mediated endocytosis. Neurosci Res. 2011;69(4):308–13.PubMedCrossRefGoogle Scholar
  49. 49.
    Nguyen DG, Hildreth JE. Involvement of macrophage mannose receptor in the binding and transmission of HIV by macrophage. Eur J Immunol. 2003;33(2):483–93.PubMedCrossRefGoogle Scholar
  50. 50.
    Reading PC, Miller JL, Anders EM. Involvement of the mannose receptor in infection of macrophages by influenza virus. J Virol. 2000;74(11):5190–7.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    O’Riordan DM, Standing JE, Limper AH. Pneumocystis carinii glycoprotein A binds macrophage mannose receptors. Infect Immun. 1995;63(3):779–84.PubMedPubMedCentralGoogle Scholar
  52. 52.
    van de Veerdonk FL, Marijnissen RJ, Kullberg BJ, Koenen HJ, Cheng SC, Joosten I, et al. The macrophage mannose receptor induces IL-17 in response to Candida albicans. Cell Host Microbe. 2009;5(4):329–40.PubMedCrossRefGoogle Scholar
  53. 53.
    Lambeau G, Lazdunski M. Receptors for a growing family of secreted phospholipases A2. Trends Pharmacol Sci. 1999;20:162–70.PubMedCrossRefGoogle Scholar
  54. 54.
    Cupillard L, Mulherkar R, Gomez N, Kadam S, Valentin E, Lazdunski E, Lambeau G. Both group IB and group IIA secreted phospholipases A2 are natural ligands of the mouse 180-kDa M-type receptor. J Biol Chem. 1999;274(11):7043–51PubMedCrossRefGoogle Scholar
  55. 55.
    Hanasaki K, Ono T, Saiga A, Morioka Y, Ikeda M, Kawamoto K, Higashino KI, Nakano K, Yamada K, Ishizaki J, Arita H. Purified group X secretory phospholipase A2 induced prominent release of arachidonic acid from human myeloid leukemia cells. J Biol Chem. 1999;274(48):34203–11.PubMedCrossRefGoogle Scholar
  56. 56.
    Hanasaki K, Arita H. Biological and pathological functions of phospholipase A2 receptor. Arch Biochem Biophys. 1999;372(2):215–23.PubMedCrossRefGoogle Scholar
  57. 57.
    East L, Rushton S, Taylor ME, Isacke CM. Characterization of sugar binding by the mannose receptor family member, Endo180. J Biol Chem. 2002;277(52):50469–75.PubMedCrossRefGoogle Scholar
  58. 58.
    Keler T, Ramakrishna V, Fanger MW. Mannose receptor-targeted vaccines. Expert Opin Biol Ther. 2004;4(12):1953–62.PubMedCrossRefGoogle Scholar
  59. 59.
    Zhan X, Jia L, Niu Y, Qi H, Chen X, Zhang Q, et al. Targeted depletion of tumour-associated macrophages by an alendronate glucomannan conjugate for cancer immunotherapy. Biomaterials. 2014;35(38):10046–57.PubMedCrossRefGoogle Scholar
  60. 60.
    Devi SJ. Preclinical efficacy of a glucuronoxylomannan-tetanus toxoid conjugate vaccine of Cryptococcus neoformans in a murine model. Vaccine. 1996;14(9):841–4.PubMedCrossRefGoogle Scholar
  61. 61.
    Oscarson S, Alpe M, Svahnberg P, Nakouzi A, Casadevall A. Synthesis and immunological studies of glycoconjugates of Cryptococcus neoformans capsular glucuronoxylomannan oligosaccharide structures. Vaccine. 2005;23(30):3961–72.PubMedCrossRefGoogle Scholar
  62. 62.
    Hradilová L, Poláková M, Dvořáková B, Hajdúch M, Petruš L. Synthesis and cytotoxicity of some D-mannose click conjugates with aminobenzoic acid derivatives. Carbohydr Res. 2012;361:1–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Nguyen H, Katavic P, Bashah NA, Ferro V. Synthesis of mannose-cholesterol conjugates for targeted liposomal drug delivery. ChemistrySelect. 2016;1(1):31–4.CrossRefGoogle Scholar
  64. 64.
    Wang F, Xiao W, Elbahnasawy MA, Bao X, Zheng Q, Gong L, Zhou Y, Yang S, Fang A, Farag MM, Wu J. Optimization of the linker length of mannose-cholesterol conjugates for enhanced mRNA delivery to dendritic cells by liposomes. Front Pharmacol. 2018;9:1–14.CrossRefGoogle Scholar
  65. 65.
    Singodia D, Verma A, Verma RK, Mishra PR. Investigations into an alternate approach to target mannose receptors on macrophages using 4-sulfated N-acetyl galactosamine more efficiently in comparison with mannose-decorated liposomes: an application in drug delivery. Nanomedicine. 2012;8(4):468–77.PubMedCrossRefGoogle Scholar
  66. 66.
    Rathore A, Jain A, Gulbake A, Shilpi S, Khare P, Jain A, et al. Mannosylated liposomes bearing Amphotericin B for effective management of visceral Leishmaniasis. J Liposome Res. 2011;21(4):333–40.PubMedCrossRefGoogle Scholar
  67. 67.
    Banerjee G, Nandi G, Mahato SB, Pakrashi A, Basu MK. Drug delivery system: targeting of pentamidines to specific sites using sugar grafted liposomes. J Antimicrobial Chemother. 1996;38(1):145–50.CrossRefGoogle Scholar
  68. 68.
    Sinha J, Mukhopadhyay S, Das N, Basu MK. Targeting of liposomal andrographolide to L. donovani-infected macrophages in vivo. Drug Deliv. 2000;7(4):209–13.PubMedCrossRefGoogle Scholar
  69. 69.
    Moonis M, Ahmad I, Bachhawat B, Moonis M, Ahmad I, Bachhawat BK. Mannosylated liposomes as carriers for hamycin in the treatment of experimental aspergillosis in Balb/C mice. J Drug Target. 1993;1(2):147–55.PubMedCrossRefGoogle Scholar
  70. 70.
    Garg M, Asthana A, Agashe HB, Agrawal GP, Jain NK. Stavudine-loaded mannosylated liposomes: in-vitro anti-HIV-I activity, tissue distribution and pharmacokinetics. J Pharm Pharmacol. 2006;58(5):605–16.PubMedCrossRefGoogle Scholar
  71. 71.
    Mitra M, Mandal AK, Chatterjee TK, Das N. Targeting of mannosylated liposome incorporated Benzyl derivative of Penicillium nigricans derived compound MT81 to reticuloendothelial systems for the treatment of visceral leishmaniasis. J Drug Target. 2005;13(5):285–93.PubMedCrossRefGoogle Scholar
  72. 72.
    Datta N, Mukherjee S, Das L, Das PK. Targeting of immunostimulatory DNA cures experimental visceral leishmaniasis through nitric oxide up-regulation and T cell activation. Eur J Immunol. 2003;33(6):1508–18.PubMedCrossRefGoogle Scholar
  73. 73.
    Kole L, Das L, Das PK. Synergistic effect of interferon-gamma and mannosylated liposome-incorporated doxorubicin in the therapy of experimental visceral leishmaniasis. J Infect Dis. 1999;180(3):811–20.PubMedCrossRefGoogle Scholar
  74. 74.
    Chono S, Tanino T, Seki T, Morimoto K. Efficient drug targeting to rat alveolar macrophages by pulmonary administration of ciprofloxacin incorporated into mannosylated liposomes for treatment of respiratory intracellular parasitic infections. J Control Release. 2008;127(1):50–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Zysk G, Brück W, Huitinga I, Fischer FR, Flachsbarth F, Van Rooijen N, et al. Elimination of blood-derived macrophages inhibits the release of interleukin-1 and the entry of leukocytes into the cerebrospinal fluid in experimental pneumococcal meningitis. J Neuroimmunol. 1997;73(1–2):77–80.PubMedCrossRefGoogle Scholar
  76. 76.
    Kang XJ, Wang HY, Peng HG, Chen BF, Zhang WY, Wu AH, Xu Q, Huang YZ. Codelivery of dihydroartemisinin and doxorubicin in mannosylated liposomes for drug-resistant colon cancer therapy. Acta Pharmacol Sin. 2017;38(6):885–96.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Garcon N, Gregoriadis G, Taylor M, Summerfield J. Mannose-mediated targeted immunoadjuvant action of liposomes. Immunology. 1988;64:743–5.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Shimizu Y, Takagi H, Nakayama T, Yamakami K, Tadakuma T, Yokoyama N, Kojima N. Intraperitoneal immunization with oligomannose-coated liposome-entrapped soluble leishmanial antigen induces antigen-specific T-helper type immune response in BALB/c mice through uptake by peritoneal macrophages. Parasite Immunol. 2007;29(5):229–39.PubMedCrossRefGoogle Scholar
  79. 79.
    Fukasawa M, Shimizu Y, Shikata K, Nakata M, Sakakibara R, Yamamoto N, Hatanaka M, Mizouchi T. Liposome oligomannose-coated with neoglycolipid, a new candidate for a safe adjuvant for induction of CD8+ cytotoxic T lymphocytes. FEBS Lett. 1998;441(3):353–6.PubMedCrossRefGoogle Scholar
  80. 80.
    Lu Y, Kawakami S, Yamashita F, Hashida M. Development of an antigen-presenting cell-targeted DNA vaccine against melanoma by mannosylated liposomes. Biomaterials. 2007;28(21):3255–62.PubMedCrossRefGoogle Scholar
  81. 81.
    White K, Rades T, Kearns P, Toth I, Hook S. Immunogenicity of liposomes containing lipid core peptides and the adjuvant Quil A. Pharm Res. 2006;23(7):1473–81.PubMedCrossRefGoogle Scholar
  82. 82.
    Praphakar RA, Shakila H, Dusthackeer VN, Munusamy MA, Kumar S, Rajan M. A mannose-conjugated multi-layered polymeric nanocarrier system for controlled and targeted release on alveolar macrophages. Polym Chem. 2018;9(5):656–67.CrossRefGoogle Scholar
  83. 83.
    Saraogi GK, Sharma B, Joshi B, Gupta P, Gupta UD, Jain NK, et al. Mannosylated gelatin nanoparticles bearing isoniazid for effective management of tuberculosis. J Drug Target. 2011;19(3):219–27.PubMedCrossRefGoogle Scholar
  84. 84.
    Viswanathan V, Mehta H, Pharande R, Bannalikar A, Gupta P, Gupta U, Mukne A. Mannosylated gelatin nanoparticles of licorice for use in tuberculosis: formulation, in vitro evaluation, in vitro cell uptake, in vivo pharmacokinetics and in vivo anti-tubercular efficacy. J Drug Delivery Sci Technol. 2018;45:255–63.CrossRefGoogle Scholar
  85. 85.
    Umamaheshwari RB, Jain NK. Receptor mediated targeting of lectin conjugated gliadin nanoparticles in the treatment of Helicobacter pylori. J Drug Target. 2003;11(7):415–24.PubMedCrossRefGoogle Scholar
  86. 86.
    Jain SK, Gupta Y, Jain A, Saxena AR, Khare P, Jain A. Mannosylated gelatin nanoparticles bearing an anti-HIV drug didanosine for site-specific delivery. Nanomedicine. 2008;4(1):41–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Kaur A, Jain S, Tiwary AK. Mannan-coated gelatin nanoparticles for sustained and targeted delivery of didanosine: in vitro and in vivo evaluation. Acta Pharma. 2008;58(1):61–74.Google Scholar
  88. 88.
    Mahajan S, Prashant CK, Koul V, Choudhary V, Dinda AK. Receptor specific macrophage targeting by mannose-conjugated gelatin nanoparticles- an in vitro and in vivo study. Curr Nanosci. 2010;6(4):413–21.CrossRefGoogle Scholar
  89. 89.
    Nahar M, Dubey V, Mishra D, Mishra PK, Dube A, Jain NK. In vitro evaluation of surface functionalized gelatin nanoparticles for macrophage targeting in the therapy of visceral leishmaniasis. J Drug Target. 2010;18(2):93–105.PubMedCrossRefGoogle Scholar
  90. 90.
    Tripathi P, Dwivedi P, Khatik R, Jaiswal AK, Dube A, Shukla P, Mishra PR. Development of 4-sulfated N-acetyl galactosamine anchored chitosan nanoparticles: a dual strategy for effective management of Leishmaniasis. Colloids Surf B: Biointerfaces. 2015;136:150–9.PubMedCrossRefGoogle Scholar
  91. 91.
    Chaubey P, Mishra B, Mudavath SL, Patel RR, Chaurasia S, Sundar S, Suvarna V, Monteiro M. Mannose-conjugated curcumin-chitosan nanoparticles: efficacy and toxicity assessments against Leishmania donovani. Int J Biol Macromol. 2018;111:109–20.PubMedCrossRefGoogle Scholar
  92. 92.
    Dwivedi P, Kansal S, Sharma M, Shukla R, Verma A, Shukla P, Tripathi P, Gupta P, Saini D, Khandelwal K, Verma R. Exploiting 4-sulphate N-acetyl galactosamine decorated gelatin nanoparticles for effective targeting to professional phagocytes in vitro and in vivo. J Drug Target. 2012;20(10):883–96.PubMedCrossRefGoogle Scholar
  93. 93.
    Chaubey P, Mishra B. Mannose-conjugated chitosan nanoparticles loaded with rifampicin for the treatment of visceral leishmaniasis. Carbohydr Polym. 2014;101(1):1101–8.PubMedCrossRefGoogle Scholar
  94. 94.
    Costa A, Sarmento B, Seabra V. Mannose-functionalized solid lipid nanoparticles are effective in targeting alveolar macrophages. Eur J Pharm Sci. 2018;114:103–13.PubMedCrossRefGoogle Scholar
  95. 95.
    Nimje N, Agarwal A, Saraogi GK, Lariya N, Rai G, Agrawal H, et al. Mannosylated nanoparticulate carriers of rifabutin for alveolar targeting. J Drug Target. 2009;17(10):777–87.PubMedCrossRefGoogle Scholar
  96. 96.
    Soni N, Soni N, Pandey H, Maheshwari R, Kesharwani P, Tekade RK. Augmented delivery of gemcitabine in lung cancer cells exploring mannose anchored solid lipid nanoparticles. J Colloid Interface Sci. 2016;481:107–16.PubMedCrossRefGoogle Scholar
  97. 97.
    Yu W, Liu C, Liu Y, Zhang N, Xu W. Mannan-modified solid lipid nanoparticles for targeted gene delivery to alveolar macrophages. Pharm Res. 2010;27(8):1584–96.PubMedCrossRefGoogle Scholar
  98. 98.
    Byeon HJ, Thao LQ, Lee S, Min SY, Lee ES, Shin BS, et al. Doxorubicin-loaded nanoparticles consisted of cationic- and mannose-modified-albumins for dual-targeting in brain tumors. J Control Release. 2016;225:301–13.PubMedCrossRefGoogle Scholar
  99. 99.
    Ye Z, Zhang Q, Wang S, Bharate P, Varela-Aramburu S, Lu M, et al. Tumour-targeted drug delivery with mannose-functionalized nanoparticles self-assembled from amphiphilic β-cyclodextrins. Chem Eur J. 2016;22(43):15216–21.PubMedCrossRefGoogle Scholar
  100. 100.
    Kaur M, Malik B, Garg T, Rath G, Goyal AK. Development and characterization of guar gum nanoparticles for oral immunization against tuberculosis. Drug Delivery. 2015;22(3):328–34.PubMedCrossRefGoogle Scholar
  101. 101.
    Haddadi A, Hamdy S, Ghotbi Z, Samuel J, Lavasanifar A. Immunoadjuvant activity of the nanoparticles’ surface modified with mannan. Nanotechnology. 2014 Aug 13;25(35):355101.PubMedCrossRefGoogle Scholar
  102. 102.
    Carrillo-Conde B, Song EH, Chavez-Santoscoy A, Phanse Y, Ramer-Tait AE, Pohl NLB, et al. Mannose-functionalized “pathogen-like” polyanhydride nanoparticles target C-type lectin receptors on dendritic cells. Mol Pharm. 2011;8(5):1877–86.PubMedCrossRefGoogle Scholar
  103. 103.
    Hamdy S, Haddadi A, Shayeganpour A, Samuel J, Lavasanifar A. Activation of antigen-specific T cell-responses by mannan-decorated PLGA nanoparticles. Pharm Res. 2011;28(9):2288–301.PubMedCrossRefGoogle Scholar
  104. 104.
    Salman HH, Irache JM, Gamazo C. Immunoadjuvant capacity of flagellin and mannosamine-coated poly(anhydride) nanoparticles in oral vaccination. Vaccine. 2009;27(35):4784–90.PubMedCrossRefGoogle Scholar
  105. 105.
    Yang R, Xu J, Xu L, Sun X, Chen Q, Zhao Y, et al. Cancer cell membrane-coated adjuvant nanoparticles with mannose modification for effective anticancer vaccination. ACS Nano. 2018;12(6):5121–9.PubMedCrossRefGoogle Scholar
  106. 106.
    Yoo MK, Kim IY, Kim EM, Jeong HJ, Lee CM, Jeong YY, et al. Superparamagnetic iron oxide nanoparticles coated with galactose-carrying polymer for hepatocyte targeting. Biomed Res Int. 2008;8:5196–202.Google Scholar
  107. 107.
    Gary-Bobo M, Mir Y, Rouxel C, Brevet D, Basile I, Maynadier M, et al. Mannose-functionalized mesoporous silica nanoparticles for efficient two-photon photodynamic therapy of solid tumors. Angew Chem Int Ed. 2011;50(48):11425–9.CrossRefGoogle Scholar
  108. 108.
    Suzuki Y, Shirai M, Asada K, Yasui H, Karayama M, Hozumi H, et al. Macrophage mannose receptor, CD206, predict prognosis in patients with pulmonary tuberculosis. Sci Rep. 2018;8(1):1–9.CrossRefGoogle Scholar
  109. 109.
    Kang JY, Shin KK, Kim HH, Min JK, Ji ES, Kim JY, Kwon O, Oh DB. Lysosomal targeting enhancement by conjugation of glycopeptides containing mannose-6-phosphate glycans derived from glyco-engineered yeast. Sci Rep. 2018;8(1):1–14.CrossRefGoogle Scholar
  110. 110.
    Lisziewicz J, Trocio J, Whitman L, Varga G, Xu J, Bakare N, Erbacher P, Fox C, Woodward R, Markham P, Arya S. DermaVir: a novel topical vaccine for HIV/AIDS. J Investig Dermatol. 2005;124(1):160–9.PubMedCrossRefGoogle Scholar
  111. 111.
    Lori F. DermaVir: a plasmid DNA-based nanomedicine therapeutic vaccine for the treatment of HIV/AIDS. Expert Rev Vaccines. 2011;10(10):1371–84.PubMedCrossRefGoogle Scholar
  112. 112.
    Vera DR, Wallace AM, Hoh CK, Mattrey RF. A synthetic macromolecule for sentinel node detection: (99m)Tc-DTPA-mannosyl-dextran. J Nucl Med. 2001;42(6):951–9.PubMedGoogle Scholar
  113. 113.
    Surasi DS, O’Malley J, Bhambhvani P. 99mTc-Tilmanocept: a novel molecular agent for lymphatic mapping and sentinel lymph node localization. J Nucl Med Technol. 2015;43(2):87–92.PubMedCrossRefGoogle Scholar
  114. 114.
    Leong SP, Kim J, Ross M, Faries M, Scoggins CR, Metz WL, Cope FO, Orahood RC. A phase 2 study of 99mTc-tilmanocept in the detection of sentinel lymph nodes in melanoma and breast cancer. Ann Surg Oncol. 2011;18(4):961–9.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Wallace AM, Han LK, Povoski SP, Deck K, Schneebaum S, Hall NC, Hoh CK, Limmer KK, Krontiras H, Frazier TG, Cox C. Comparative evaluation of [99m Tc]tilmanocept for sentinel lymph node mapping in breast cancer patients: results of two phase 3 trials. Ann Surg Oncol. 2013;20(8):2590–9.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Sondak VK, King DW, Zager JS, Schneebaum S, Kim J, Leong SP, Faries MB, Averbook BJ, Martinez SR, Puleo CA, Messina JL. Combined analysis of phase III trials evaluating [99mTc] tilmanocept and vital blue dye for identification of sentinel lymph nodes in clinically node-negative cutaneous melanoma. Ann Surg Oncol. 2013;20(2):680–8.PubMedCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2019

Authors and Affiliations

  • Priyanka Jahagirdar
    • 1
  • Amit S. Lokhande
    • 1
  • Prajakta Dandekar
    • 2
  • Padma V. Devarajan
    • 2
    Email author
  1. 1.Department of Pharmaceutical Sciences & TechnologyInstitute of Chemical TechnologyMatunga, MumbaiIndia
  2. 2.Department of Pharmaceutical SciencesInsitute of Chemical Technology, Deemed University, Elite Status and Centre of Excellence, Government of MaharashtraMumbaiIndia

Personalised recommendations