Advertisement

Scavenger Receptor and Targeting Strategies

  • Amit S. Lokhande
  • Priyanka Jahagirdar
  • Prajakta Dandekar
  • Padma V. DevarajanEmail author
Chapter
Part of the AAPS Advances in the Pharmaceutical Sciences Series book series (AAPS, volume 39)

Abstract

Scavenger receptors constitute a group of receptors on the cell surface that attach to various ligands and remove the targets that are non-self or altered. Signaling, transport, endocytosis, phagocytosis, and adhesion resulting in the removal of harmful and degraded substances are some functions of these receptors. Scavenger receptors bind a large repertoire of ligands indicating their involvement in homeostasis and multiple disease pathologies. In this chapter, we describe the role of scavenger receptor group in the pathogenesis of infections and cancer. In addition, we present a variety of ligands with their scavenger receptor binding strategies through different examples of targeted drug delivery systems.

Keywords

Cancer Infections Nanosystems Polyanionic ligand Scavenger receptor Targeted drug delivery 

Abbreviations

AcLDL

Acylated low-density lipoprotein

Aco-HSA

Polyaconitylated-human serum albumin

AGE

Advanced glycation end products

AgNPs

Silver nanoparticles

BBB

Blood–brain barrier

BSA

Bovine serum albumin

CFUs

Colony-forming units

CR

Cysteine rich

CXC

Chemokine receptor 16

DCP

Dicetylphosphate

DCs

Dendritic cells

EDCs

Endothelial cells

EGF

Epidermal growth factor

Fe2O3

Iron oxide

FEEL

Fasciclin EGF-like, and lamin-type EGF-like domains

GPI

Glycosyl-phosphatidylinositol

HDL

High-density lipoprotein

Hsp

Heat shock proteins

LAMP

Lysosome-associated membrane glycoprotein

LCO

Lithocholic oleate

LDL

Low-density lipoprotein

LDLR

Low-density lipoprotein receptor

LOX-1

Lectin-like oxidized LDL receptor-1

LPS

Lipopolysaccharide

LTA

Lipoteichoic acid

MARCO

Macrophage receptor with collagenous structure

MBSA

Maleylated albumin

MTX

Methotrexate

NMs

Nanomedicines

NK cells

Natural Killer cells

OxLDL

Oxidized low-density lipoprotein

PAS

p-amino salicylic acid

PC

Phosphatidylcholine

PG

Phosphatidylglycerol

POPC

Palmitoyloleoyl-phosphatidylcholine

PS

Phosphatidylserine

RBCs

Red blood cells

ROS

Reactive oxygen species

S1-CLP

Stabilin-1 interacting chitinase-like protein

SCARA-5

Scavenger receptor class A member 5

SiRNA

Small interfering ribonucleic acid

SNP

Single nucleotide polymorphism

SPARC

Secreted protein acidic and rich in cysteine

SR

Scavenger receptor

SRCL

Scavenger receptors with C-type lectin

SRPSOX

Scavenger receptor that binds phosphatidylserine and oxidized lipids

TAMs

Tumor-associated macrophages

TiO2

Titanium dioxide

UGPR

Uteroglobin-related protein

VLDL

Very low-density lipoproteins

ZnO

Zinc oxide

References

  1. 1.
    Canton J, Neculai D, Grinstein S. Scavenger receptors in homeostasis and immunity. Nat Rev Immunol. 2013;13(9):621–34.PubMedCrossRefGoogle Scholar
  2. 2.
    Brown MS, Goldstein JL. Receptor-mediated endocytosis: insights from the lipoprotein receptor system. Proc Natl Acad Sci. 1979;76(7):3330–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Brown MS, Goldstein JL, Krieger M, Ho YK, Anderson RG. Reversible accumulation of cholesteryl esters in macrophages incubated with acetylated lipoproteins. J Cell Biol. 1979;82(3):597–613.PubMedCrossRefGoogle Scholar
  4. 4.
    Su T, Zhao L, Ruan X, Zuo G, Gong J. Synergistic effect of scavenger receptor A and low-density lipoprotein receptor on macrophage foam cell formation under inflammatory stress. Mol Med Rep. 2013;7(1):37–42.PubMedCrossRefGoogle Scholar
  5. 5.
    PrabhuDas MR, Baldwin CL, Bollyky PL, Bowdish DM, Drickamer K, Febbraio M, Herz J, Kobzik L, Krieger M, Loike J, McVicker B. A consensus definitive classification of scavenger receptors and their roles in health and disease. J Immunol. 2017;198(10):3775–89.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Zani I, Stephen S, Mughal N, Russell D, Homer-Vanniasinkam S, Wheatcroft S, Ponnambalam S. Scavenger receptor structure and function in health and disease. Cell. 2015;4(2):178–201.CrossRefGoogle Scholar
  7. 7.
    Ashraf MZ, Sahu A. Scavenger receptors: a key player in cardiovascular diseases. Biomol Concepts. 2012;3(4):371–80.PubMedCrossRefGoogle Scholar
  8. 8.
    de Winther MP, van Dijk KW, Havekes LM, Hofker MH. Macrophage scavenger receptor class A: a multifunctional receptor in atherosclerosis. Arterioscler Thromb Vasc Biol. 2000;20(2):290–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Wada Y, Doi T, Matsumoto A, Asaoka H, Honda M, Hatano H, Emi M, Naito M, Mori T, Takahashi K, Nakamura H. Structure and function of macrophage scavenger receptors. Ann N Y Acad Sci. 1994;748(1):226–38.CrossRefGoogle Scholar
  10. 10.
    Bowdish DM, Gordon S. Conserved domains of the class A scavenger receptors: evolution and function. Immunol Rev. 2009;227(1):19–31.PubMedCrossRefGoogle Scholar
  11. 11.
    Resnick D, Chatterton JE, Schwartz K, Slayter H, Krieger M. Structures of class A macrophage scavenger receptors electron microscopic study of flexible, multidomain, fibrous proteins and determination of the disulfide bond pattern of the scavenger receptor cysteine-rich domain. J Biol Chem. 1996;271(43):26924–30.PubMedCrossRefGoogle Scholar
  12. 12.
    Kodama T, Freeman M, Rohrer L, Zabrecky J, Matsudaira P, Krieger M. Type I macrophage scavenger receptor contains α-helical and collagen-like coiled coils. Nature. 1990;343(6258):531–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Elomaa O, Sankala M, Pikkarainen T, Bergmann U, Tuuttila A, Raatikainen-Ahokas A, Sariola H, Tryggvason K. Structure of the human macrophage MARCO receptor and characterization of its bacteria-binding region. J Biol Chem. 1998;273(8):4530–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Jiang Y, Oliver P, Davies KE, Platt N. Identification and characterization of murine SCARA5, a novel class A scavenger receptor that is expressed by populations of epithelial cells. J Biol Chem. 2006;281(17):11834–45.PubMedCrossRefGoogle Scholar
  15. 15.
    Nakamura K, Funakoshi H, Tokunaga F, Nakamura T. Molecular cloning of a mouse scavenger receptor with C-type lectin (SRCL), a novel member of the scavenger receptor family. Biochim Biophys Acta. 2001;1522(1):53–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Thorne RF, Meldrum CJ, Harris SJ, Dorahy DJ, Shafren DR, Berndt MC, Burns GF, Gibson PG. CD36 forms covalently associated dimers and multimers in platelets and transfected COS-7 cells. Biochem Biophys Res Commun. 1997;240(3):812–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Reaven E, Cortez Y, Leers-Sucheta S, Nomoto A, Azhar S. Dimerization of the scavenger receptor class B type I formation, function, and localization in diverse cells and tissues. J Lipid Res. 2004;45(3):513–28.PubMedCrossRefGoogle Scholar
  18. 18.
    Pearson A, Lux AL, Krieger M. Expression cloning of dSR-CI, a class C macrophage-specific scavenger receptor from Drosophila melanogaster. Proc Natl Acad Sci. 1995;92(9):4056–60.PubMedCrossRefGoogle Scholar
  19. 19.
    Jiang Z, Shih DM, Xia YR, Lusis AJ, de Beer FC, de Villiers WJ, van der Westhuyzen DR, de Beer MC. Structure, organization, and chromosomal mapping of the gene encoding macrosialin, a macrophage-restricted protein. Genomics. 1998;50(2):199–205.PubMedCrossRefGoogle Scholar
  20. 20.
    Yamanaka S, Zhang XY, Miura K, Kim S, Iwao H. The human gene encoding the lectin-type oxidized LDL receptor (OLR1) is a novel member of the natural killer gene complex with a unique expression profile. Genomics. 1998;54(2):191–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Ishii J, Adachi H, Aoki J, Koizumi H, Tomita S, Suzuki T, Tsujimoto M, Inoue K, Arai H. SREC-II, a new member of the scavenger receptor type F family, trans-interacts with SREC-I through its extracellular domain. J Biol Chem. 2002;277(42):39696–702.PubMedCrossRefGoogle Scholar
  22. 22.
    Adachi H, Tsujimoto M. FEEL-1, a novel scavenger receptor with in vitro bacteria-binding and angiogenesis-modulating activities. J Biol Chem. 2002;277(37):34264–70.PubMedCrossRefGoogle Scholar
  23. 23.
    Rodamilans B, Muñoz IG, Bragado-Nilsson E, Sarrias MR, Padilla O, Blanco FJ, Lozano F, Montoya G. Crystal structure of the third extracellular domain of CD5 reveals the fold of a group B scavenger cysteine-rich receptor domain. J Biol Chem. 2007;282(17):12669–77.PubMedCrossRefGoogle Scholar
  24. 24.
    Ibrahim ZA, Armour CL, Phipps S, Sukkar MB. RAGE and TLRs: relatives, friends or neighbours. Mol Immunol. 2013;56(4):739–44.PubMedCrossRefGoogle Scholar
  25. 25.
    Naor D, Sionov RV, Ish-Shalom D. CD44: structure, function and association with the malignant process. Adv Cancer Res. 1997;71:241–319. Academic Press.PubMedCrossRefGoogle Scholar
  26. 26.
    Dzwonek J, Wilczynski GM. CD44: molecular interactions, signaling and functions in the nervous system. Front Cell Neurosci. 2015;9:175.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Oh SJ, Kim TH, Lim JM, Jeong JW. Progesterone induces expression of Lrp2 in the murine uterus. Biochem Biophys Res Commun. 2013;441(1):175–9.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Bartolome F, Antequera D, Tavares E, Pascual C, Maldonado R, Camins A, Carro E. Obesity and neuroinflammatory phenotype in mice lacking endothelial megalin. J Neuroinflammation. 2017;14(1):26.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Plüddemann A, Neyen C, Gordon S. Macrophage scavenger receptors and host-derived ligands. Methods. 2007;43(3):207–17.PubMedCrossRefGoogle Scholar
  30. 30.
    Ashkenas J, Penman M, Vasile E, Acton S, Freeman M, Krieger M. Structures and high and low affinity ligand binding properties of murine type I and type II macrophage scavenger receptors. J Lipid Res. 1993;34(6):983–1000.PubMedGoogle Scholar
  31. 31.
    Stephen SL, Freestone K, Dunn S, Twigg MW, Homer-Vanniasinkam S, Walker JH, Wheatcroft SB, Ponnambalam S. Scavenger receptors and their potential as therapeutic targets in the treatment of cardiovascular disease. Int J Hypertens. 2010;2010:646929.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Ojala JR, Pikkarainen T, Tuuttila A, Sandalova T, Tryggvason K. Crystal structure of the cysteine-rich domain of scavenger receptor MARCO reveals the presence of a basic and an acidic cluster that both contribute to ligand recognition. J Biol Chem. 2007;282(22):16654–66.PubMedCrossRefGoogle Scholar
  33. 33.
    Chao Y, Makale M, Karmali PP, Sharikov Y, Tsigelny I, Merkulov S, Kesari S, Wrasidlo W, Ruoslahti E, Simberg D. Recognition of dextran–superparamagnetic iron oxide nanoparticle conjugates (Feridex) via macrophage scavenger receptor charged domains. Bioconjug Chem. 2012;23(5):1003–9.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Ibrahimi A, Abumrad NA. Role of CD36 in membrane transport of long-chain fatty acids. Curr Opin Clin Nutr Metab Care. 2002;5(2):139–45.PubMedCrossRefGoogle Scholar
  35. 35.
    Chen Y, Wang X, Ben J, Yue S, Bai H, Guan X, Bai X, Jiang L, Ji Y, Fan L, Chen Q. The di-leucine motif contributes to class a scavenger receptor-mediated internalization of acetylated lipoproteins. Arterioscler Thromb Vasc Biol. 2006;26(6):1317–22.PubMedCrossRefGoogle Scholar
  36. 36.
    Murphy JE, Vohra RS, Dunn S, Holloway ZG, Monaco AP, Homer-Vanniasinkam S, Walker JH, Ponnambalam S. Oxidised LDL internalisation by the LOX-1 scavenger receptor is dependent on a novel cytoplasmic motif and is regulated by dynamin-2. J Cell Sci. 2008;121(13):2136–47.PubMedCrossRefGoogle Scholar
  37. 37.
    Zeng Y, Tao N, Chung KN, Heuser JE, Lublin DM. Endocytosis of oxidized low density lipoprotein through scavenger receptor CD36 utilizes a lipid raft pathway that does not require caveolin-1. J Biol Chem. 2003;278(46):45931–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Rahaman SO, Lennon DJ, Febbraio M, Podrez EA, Hazen SL, Silverstein RL. A CD36-dependent signaling cascade is necessary for macrophage foam cell formation. Cell Metab. 2006;4(3):211–21.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Hughes DA, Fraser IP, Gordon S. Murine macrophage scavenger receptor: in vivo expression and function as receptor for macrophage adhesion in lymphoid and non-lymphoid organs. Eur J Immunol. 1995;25(2):466–73.PubMedCrossRefGoogle Scholar
  40. 40.
    Zingg JM, Ricciarelli R, Azzi A. Scavenger receptors and modified lipoproteins: fatal attractions. IUBMB Life. 2000;49(5):397–403.PubMedCrossRefGoogle Scholar
  41. 41.
    Platt N, Gordon S. Scavenger receptors: diverse activities and promiscuous binding of polyanionic ligands. Chem Biol. 1998;5(8):R 193–203.CrossRefGoogle Scholar
  42. 42.
    Elomaa O, Kangas M, Sahlberg C, Tuukkanen J, Sormunen R, Liakka A, Thesleff I, Kraal G, Tryggvason K. Cloning of a novel bacteria-binding receptor structurally related to scavenger receptors and expressed in a subset of macrophages. Cell. 1995;80(4):603–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Terpstra V, van Amersfoort ES, van Velzen AG, Kuiper J, van Berkel TJ. Hepatic and extrahepatic scavenger receptors: function in relation to disease. Arterioscler Thromb Vasc Biol. 2000;20(8):1860–72.PubMedCrossRefGoogle Scholar
  44. 44.
    Rämet M, Pearson A, Manfruelli P, Li X, Koziel H, Göbel V, Chung E, Krieger M, Ezekowitz RA. Drosophila scavenger receptor CI is a pattern recognition receptor for bacteria. Immunity. 2001;15(6):1027–38.PubMedCrossRefGoogle Scholar
  45. 45.
    Ramprasad MP, Terpstra V, Kondratenko N, Quehenberger O, Steinberg D. Cell surface expression of mouse macrosialin and human CD68 and their role as macrophage receptors for oxidized low density lipoprotein. Proc Natl Acad Sci. 1996;93(25):14833–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Moriwaki H, Kume N, Sawamura T, Aoyama T, Hoshikawa H, Ochi H, Nishi E, Masaki T, Kita T. Ligand specificity of LOX-1, a novel endothelial receptor for oxidized low density lipoprotein. Arterioscler Thromb Vasc Biol. 1998;18(10):1541–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Berwin B, Delneste Y, Lovingood RV, Post SR, Pizzo SV. SREC-I, a type F scavenger receptor, is an endocytic receptor for calreticulin. J Biol Chem. 2004;279(49):51250–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Shimaoka T, Kume N, Minami M, Hayashida K, Kataoka H, Kita T, Yonehara S. Molecular cloning of a novel scavenger receptor for oxidized low density lipoprotein, SR-PSOX, on macrophages. J Biol Chem. 2000;275(52):40663–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Prevo R, Banerji S, Ni J, Jackson DG. Rapid plasma membrane-endosomal trafficking of the lymph node sinus and high endothelial venule scavenger receptor/homing receptor stabilin-1 (FEEL-1/CLEVER-1). J Biol Chem. 2004;279(50):52580–92.PubMedCrossRefGoogle Scholar
  50. 50.
    Vasquez M, Simões I, Consuegra-Fernández M, Aranda F, Lozano F, Berraondo P. Exploiting scavenger receptors in cancer immunotherapy: lessons from CD5 and SR-B1. Eur J Immunol. 2017;47(7):1108–18.PubMedCrossRefGoogle Scholar
  51. 51.
    Yu X, Guo C, Fisher PB, Subjeck JR, Wang XY. Scavenger receptors: emerging roles in cancer biology and immunology. Adv Cancer Res. 2015;128:309–64.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Danilo C, Gutierrez-Pajares JL, Mainieri MA, Mercier I, Lisanti MP, Frank PG. Scavenger receptor class B type I regulates cellular cholesterol metabolism and cell signaling associated with breast cancer development. Breast Cancer Res. 2013;15(5):R87.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Twiddy AL, Cox ME, Wasan KM. Knockdown of scavenger receptor class B type I reduces prostate specific antigen secretion and viability of prostate cancer cells. Prostate. 2012;72(9):955–65.PubMedCrossRefGoogle Scholar
  54. 54.
    Kamada N, Kodama T, Suzuki H. Macrophage scavenger receptor (SR-A I/II) deficiency reduced diet-induced atherosclerosis in C57BL/6J mice. J Atheroscler Thromb. 2001;8(1):1–6.PubMedCrossRefGoogle Scholar
  55. 55.
    Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH, Krieger M. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science. 1996;271(5248):518–20.PubMedCrossRefGoogle Scholar
  56. 56.
    Husemann J, Loike JD, Anankov R, Febbraio M, Silverstein SC. Scavenger receptors in neurobiology and neuropathology: their role on microglia and other cells of the nervous system. Glia. 2002;40(2):195–205.PubMedCrossRefGoogle Scholar
  57. 57.
    Terpstra V, Bird DA, Steinberg D. Evidence that the lipid moiety of oxidized low density lipoprotein plays a role in its interaction with macrophage receptors. Proc Natl Acad Sci. 1998;95(4):1806–11.PubMedCrossRefGoogle Scholar
  58. 58.
    El Khoury J, Hickman SE, Thomas CA, Cao L, Silverstein SC, Loike JD. Scavenger receptor-mediated adhesion of microglia to β-amyloid fibrils. Nature. 1996;382(6593):716–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Dunne DW, Resnick D, Greenberg J, Krieger M, Joiner KA. The type I macrophage scavenger receptor binds to gram-positive bacteria and recognizes lipoteichoic acid. Proc Natl Acad Sci. 1994;91(5):1863–7.PubMedCrossRefGoogle Scholar
  60. 60.
    Fujiwara M, Baldeschwieler JD, Grubbs RH. Receptor-mediated endocytosis of poly (acrylic acid)-conjugated liposomes by macrophages. Biochim Biophys Acta. 1996;1278(1):59–67.PubMedCrossRefGoogle Scholar
  61. 61.
    Cordes T, Michelucci A, Hiller K. Itaconic acid: the surprising role of an industrial compound as a mammalian antimicrobial metabolite. Annu Rev Nutr. 2015;35:451–73.PubMedCrossRefGoogle Scholar
  62. 62.
    Wang G, Simberg D. Role of scavenger receptors in immune recognition and targeting of nanoparticles. Rev Cell Biol Mol Med. 2006;1(3):166–89.Google Scholar
  63. 63.
    Minami M, Kume N, Shimaoka T, Kataoka H, Hayashida K, Yonehara S, Kita T. Expression of scavenger receptor for phosphatidylserine and oxidized lipoprotein (SR-PSOX) in human atheroma. Ann N Y Acad Sci. 2001;947(1):373–6.PubMedCrossRefGoogle Scholar
  64. 64.
    Gu BJ, Saunders BM, Petrou S, Wiley JS. P2X7 is a scavenger receptor for apoptotic cells in the absence of its ligand, extracellular ATP. J Immunol. 2011;187(5):2365–75.PubMedCrossRefGoogle Scholar
  65. 65.
    Podrez EA, Poliakov E, Shen Z, Zhang R, Deng Y, Sun M, Finton PJ, Shan L, Gugiu B, Fox PL, Hoff HF. Identification of a novel family of oxidized phospholipids that serve as ligands for the macrophage scavenger receptor CD36. J Biol Chem. 2002;277(41):38503–16.PubMedCrossRefGoogle Scholar
  66. 66.
    Balasubramanian K, Maeda A, Lee JS, Mohammadyani D, Dar HH, Jiang JF, Croix CM, Watkins S, Tyurin VA, Tyurina YY, Klöditz K. Dichotomous roles for externalized cardiolipin in extracellular signaling: promotion of phagocytosis and attenuation of innate immunity. Sci Signal. 2015;8(395):ra95.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Tsubamotoa Y, Yamada N, Watanabe Y, Inaba T, Shiomi M, Shimano H, Gotoda T, Harada K, Shimada M, Ohsuga JI, Kawamura M. Dextran sulfate, a competitive inhibitor for scavenger receptor, prevents the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbits. Atherosclerosis. 1994;106(1):43–50.CrossRefGoogle Scholar
  68. 68.
    Brown MS, Goldstein JL. Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu Rev Biochem. 1983;52(1):223–61.PubMedCrossRefGoogle Scholar
  69. 69.
    Urano K, Haba M, Yuasa H, Watanabe J. Internalization of fractionated 3H-heparin by the scavenger-like receptor in rat liver parenchymal cells in primary culture. Drug Deliv. 1997;4(3):181–5.CrossRefGoogle Scholar
  70. 70.
    Harris EN. Heparin clearance by liver scavenger receptors. Biochem Anal Biochem. 2012;1:e114.CrossRefGoogle Scholar
  71. 71.
    Funderburgh JL, Mitschler RR, Funderburgh ML, Roth MR, Chapes SK, Conrad GW. Macrophage receptors for lumican. A corneal keratan sulfate proteoglycan. Invest Ophthalmol Vis Sci. 1997;38(6):1159–67.PubMedGoogle Scholar
  72. 72.
    Harris EN, Weigel PH. The ligand-binding profile of HARE: hyaluronan and chondroitin sulfates A, C, and D bind to overlapping sites distinct from the sites for heparin, acetylated low-density lipoprotein, dermatan sulfate, and CS-E. Glycobiology. 2008;18(8):638–48.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Sobal G, Sinzinger H. Binding of [99mTc] chondroitin sulfate to scavenger receptors on human chondrocytes as compared to binding of oxidized [125I] LDL on human macrophages. J Recept Sig Transd. 2002;22(1–4):459–70.CrossRefGoogle Scholar
  74. 74.
    Fang W, Bi D, Zheng R, Cai N, Xu H, Zhou R, Lu J, Wan M, Xu X. Identification and activation of TLR4-mediated signaling pathways by alginate-derived guluronate oligosaccharide in RAW264. 7 macrophages. Sci Rep. 2017;7(1):1663.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    McCourt PA, Smedsrød BH, Melkko J, Johansson S. Characterization of a hyaluronan receptor on rat sinusoidal liver endothelial cells and its functional relationship to scavenger receptors. Hepatology. 1999;30(5):1276–86.PubMedCrossRefGoogle Scholar
  76. 76.
    Kelley JL, Ozment TR, Li C, Schweitzer JB, Williams DL. Scavenger receptor-A (CD204): a two-edged sword in health and disease. Crit Rev Immunol. 2014;34(3):241–61.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Harada M, Imai J, Okuno S, Suzuki T. Macrophage-mediated activation of camptothecin analogue T-2513–carboxymethyl dextran conjugate (T-0128): possible cellular mechanism for antitumor activity. J Control Release. 2000;69(3):389–97.PubMedCrossRefGoogle Scholar
  78. 78.
    Tokuda H, Masuda S, Takakura Y, Sezaki H, Hashida M. Specific uptake of succinylated proteins via a scavenger receptor-mediated mechanism in cultured brain microvessel endothelial cells. Biochem Biophys Res Commun. 1993;196(1):18–24.PubMedCrossRefGoogle Scholar
  79. 79.
    Hoang B, Ernsting MJ, Roy A, Murakami M, Undzys E, Li SD. Docetaxel-carboxymethylcellulose nanoparticles target cells via a SPARC and albumin dependent mechanism. Biomaterials. 2015;59:66–76.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Martino JV, Van Limbergen J, Cahill LE. The role of carrageenan and carboxymethylcellulose in the development of intestinal inflammation. Front Pediatr. 2017;5:96.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Iesaki T, Takeuchi T, Okano M, Hashimoto R, Kakigi R, Ishii Y, Okada T. Fucoidan, a ligand of scavenger receptor class a, causes vascular relaxation through a nitric oxide/cGMP-mediated pathway in rat aorta. Atherosclerosis. 2014;235(2):e36.CrossRefGoogle Scholar
  82. 82.
    Thelen T, Hao Y, Medeiros AI, Curtis JL, Serezani CH, Kobzik L, Harris LH, Aronoff DM. The class A scavenger receptor, macrophage receptor with collagenous structure, is the major phagocytic receptor for Clostridium sordellii expressed by human decidual macrophages. J Immunol. 2010;185(7):4328–35.PubMedCrossRefGoogle Scholar
  83. 83.
    Rost MS, Sumanas S. Hyaluronic acid receptor stabilin-2 regulates Erk phosphorylation and arterial-venous differentiation in zebrafish. PLoS One. 2014;9(2):e88614.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Marshall-Clarke S, Downes JE, Haga IR, Bowie AG, Borrow P, Pennock JL, Grencis RK, Rothwell P. Polyinosinic acid is a ligand for toll-like receptor 3. J Biol Chem. 2007;282(34):24759–66.PubMedCrossRefGoogle Scholar
  85. 85.
    Pearson AM, Rich A, Krieger M. Polynucleotide binding to macrophage scavenger receptors depends on the formation of base-quartet-stabilized four-stranded helices. J Biol Chem. 1993;268(5):3546–54.PubMedGoogle Scholar
  86. 86.
    Zeng J, Zhang Y, Hao J, Sun Y, Liu S, Bernlohr DA, Sauter ER, Cleary MP, Suttles J, Li B. Stearic acid induces CD11c expression in proinflammatory macrophages via epidermal fatty acid binding protein. J Immunol. 2018;200(10):3407–19.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Loison C, Mendy F, Sérougne C, Lutton C. Dietary myristic acid modifies the HDL-cholesterol concentration and liver scavenger receptor BI expression in the hamster. Br J Nutr. 2002;87(3):199–210.PubMedCrossRefGoogle Scholar
  88. 88.
    Chao Y, Karmali PP, Mukthavaram R, Kesari S, Kouznetsova VL, Tsigelny IF, Simberg D. Direct recognition of superparamagnetic nanocrystals by macrophage scavenger receptor SR-AI. ACS Nano. 2013;7(5):4289–98.PubMedCrossRefGoogle Scholar
  89. 89.
    Suzuki Y, Tada-Oikawa S, Ichihara G, Yabata M, Izuoka K, Suzuki M, Sakai K, Ichihara S. Zinc oxide nanoparticles induce migration and adhesion of monocytes to endothelial cells and accelerate foam cell formation. Toxicol Appl Pharmacol. 2014;278(1):16–25.PubMedCrossRefGoogle Scholar
  90. 90.
    Iyer R, Hamilton RF, Li L, Holian A. Silica-induced apoptosis mediated via scavenger receptor in human alveolar macrophages. Toxicol Appl Pharmacol. 1996;141(1):84–92.PubMedCrossRefGoogle Scholar
  91. 91.
    Murthy S, Larson-Casey JL, Ryan AJ, He C, Kobzik L, Carter AB. Alternative activation of macrophages and pulmonary fibrosis are modulated by scavenger receptor, macrophage receptor with collagenous structure. FASEB J. 2015;29(8):3527–36.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Resnick D, Freedman NJ, Xu SH, Krieger M. Secreted extracellular domains of macrophage scavenger receptors form elongated trimers which specifically bind crocidolite asbestos. J Biol Chem. 1993;268(5):3538–45.PubMedGoogle Scholar
  93. 93.
    BEPPU M, HORA M, KIKUGAWA K. A simple method for the assessment of macrophage scavenger receptor-ligand interaction: adherence of erythrocytes coated with oxidized low density lipoprotein and modified albumin to macrophages. Biol Pharm Bull. 1994;17(1):39–46.PubMedCrossRefGoogle Scholar
  94. 94.
    Takata K, Horiuchi S, Morino Y. Scavenger receptor-mediated recognition of maleylated albumin and its relation to subsequent endocytic degradation. Biochim Biophys Acta. 1989;984(3):273–80.PubMedCrossRefGoogle Scholar
  95. 95.
    Greaves DR, Gordon S. The macrophage scavenger receptor at 30 years of age: current knowledge and future challenges. J Lipid Res. 2009;50(Supplement):S282–6.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Herrmann M, Schäfer C, Heiss A, Gräber S, Kinkeldey A, Büscher A, Schmitt MM, Bornemann J, Nimmerjahn F, Herrmann M, Helming L. Clearance of fetuin-A–containing calciprotein particles is mediated by scavenger receptor -A. Circ Res. 2012;111(5):575–84.PubMedCrossRefGoogle Scholar
  97. 97.
    Melkko J, Hellevik T, Risteli L, Risteli J, Smedsrød B. Clearance of NH2-terminal propeptides of types I and III procollagen is a physiological function of the scavenger receptor in liver endothelial cells. J Exp Med. 1994;179(2):405–12.PubMedCrossRefGoogle Scholar
  98. 98.
    Facciponte JG, Wang XY, Subjeck JR. Hsp110 and Grp170, members of the Hsp70 superfamily, bind to scavenger receptor-A and scavenger receptor expressed by endothelial cells -I. Eur J Immunol. 2007;37(8):2268–79.PubMedCrossRefGoogle Scholar
  99. 99.
    Ben J, Zhang Y, Zhou R, Zhang H, Zhu X, Li X, Zhang H, Li N, Zhou X, Bai H, Yang Q. Major vault protein regulates class A scavenger receptor-mediated tumor necrosis factor-α synthesis and apoptosis in macrophages. J Biol Chem. 2013;288(27):20076–84.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Takahashi T, Suzuki T. Role of sulfatide in normal and pathological cells and tissues. J Lipid Res. 2012;53(8):1437–50.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Shannahan JH, Bai W, Brown JM. Implications of scavenger receptors in the safe development of nanotherapeutics. Recept Clin Invest. 2015;2(3):e811.Google Scholar
  102. 102.
    Basu SK, Majumdar S, Mukhopadhyay B, Mukhopadhyay A. Receptor-mediated drug delivery to macrophages. Proc Indian Natl Sci Acad Part B. 1994;60:345–56.Google Scholar
  103. 103.
    Scherphof GL, Kamps JA. Receptor versus non-receptor mediated clearance of liposomes. Adv Drug Deliv Rev. 1998;32(1–2):81–97.PubMedCrossRefGoogle Scholar
  104. 104.
    Semple SC, Chonn A, Cullis PR. Interactions of liposomes and lipid-based carrier systems with blood proteins: relation to clearance behaviour in vivo. Adv Drug Deliv Rev. 1998;32(1–2):3–17.PubMedCrossRefGoogle Scholar
  105. 105.
    Liu D, Liu F, Song YK. Recognition and clearance of liposomes containing phosphatidylserine are mediated by serum opsonin. Biochim Biophys Acta. 1995;1235(1):140–6.PubMedCrossRefGoogle Scholar
  106. 106.
    Devine DV, Wong K, Serrano K, Chonn A, Cullis PR. Liposome complement interactions in rat serum: implications for liposome survival studies. Biochim Biophys Acta. 1994;1191(1):43–51.PubMedCrossRefGoogle Scholar
  107. 107.
    Fidler IJ, Raz A, Fogler WE, Kirsh R, Bugelski P, Poste G. Design of liposomes to improve delivery of macrophage-augmenting agents to alveolar macrophages. Cancer Res. 1980;40(12):4460–6.PubMedGoogle Scholar
  108. 108.
    Chonn A, Semple SC, Cullis PR. Association of blood proteins with large unilamellar liposomes in vivo. Relation to circulation lifetimes. J Biol Chem. 1992;267(26):18759–65.PubMedGoogle Scholar
  109. 109.
    Vyas SP, Kannan ME, Jain S, Mishra V, Singh P. Design of liposomal aerosols for improved delivery of rifampicin to alveolar macrophages. Int J Pharm. 2004;269(1):37–49.PubMedCrossRefGoogle Scholar
  110. 110.
    Kamps JA, Morselt HW, Swart PJ, Meijer DK, Scherphof GL. Massive targeting of liposomes, surface-modified with anionized albumins, to hepatic endothelial cells. Proc Natl Acad Sci. 1997;94(21):11681–5.PubMedCrossRefGoogle Scholar
  111. 111.
    Etzerodt A, Maniecki MB, Graversen JH, Møller HJ, Torchilin VP, Moestrup SK. Efficient intracellular drug-targeting of macrophages using stealth liposomes directed to the hemoglobin scavenger receptor CD163. J Control Release. 2012;160(1):72–80.PubMedCrossRefGoogle Scholar
  112. 112.
    Li X, Kan HY, Lavrentiadou S, Krieger M, Zannis V. Reconstituted discoidal ApoE-phospholipid particles are ligands for the scavenger receptor BI The amino-terminal 1–165 domain of ApoE suffices for receptor binding. J Biol Chem. 2002;277(24):21149–57.PubMedCrossRefGoogle Scholar
  113. 113.
    Sakai-Kato K, Sakurai M, Takechi-Haraya Y, Nanjo K, Goda Y. Involvement of scavenger receptor class B type 1 and low-density lipoprotein receptor in the internalization of liposomes into HepG2 cells. Biochim Biophys Acta. 2017;1859(11):2253–8.CrossRefGoogle Scholar
  114. 114.
    Lee KD, Pitas RE, Papahadjopoulos D. Evidence that the scavenger receptor is not involved in the uptake of negatively charged liposomes by cells. Biochim Biophys Acta. 1992;1111(1):1–6.PubMedCrossRefGoogle Scholar
  115. 115.
    Pinheiro M, Lúcio M, Lima JL, Reis S. Liposomes as drug delivery systems for the treatment of TB. Nanomedicine. 2011;6(8):1413–28.PubMedCrossRefGoogle Scholar
  116. 116.
    Labana S, Pandey R, Sharma S, Khuller GK. Chemotherapeutic activity against murine tuberculosis of once weekly administered drugs (isoniazid and rifampicin) encapsulated in liposomes. Int J Antimicrob Agents. 2002;20(4):301–4.PubMedCrossRefGoogle Scholar
  117. 117.
    Pollock S, Nichita NB, Böhmer A, Radulescu C, Dwek RA, Zitzmann N. Polyunsaturated liposomes are antiviral against hepatitis B and C viruses and HIV by decreasing cholesterol levels in infected cells. Proc Natl Acad Sci. 2010;107(40):17176–81.PubMedCrossRefGoogle Scholar
  118. 118.
    Tempone AG, Perez D, Rath S, Vilarinho AL, Mortara RA, de Andrade Jr HF. Targeting Leishmania (L.) chagasi amastigotes through macrophage scavenger receptors: the use of drugs entrapped in liposomes containing phosphatidylserine. J Antimicrob Chemother. 2004;54(1):60–8.PubMedCrossRefGoogle Scholar
  119. 119.
    da Costa-Silva TA, Galisteo AJ, Lindoso JA, Barbosa LR, Tempone AG. Nanoliposomal buparvaquone immunomodulates Leishmania infantum-infected macrophages and is highly effective in a murine model. Antimicrob Agents Chemother. 2017;61(4):e02297–16.PubMedPubMedCentralGoogle Scholar
  120. 120.
    Pollock S, Antrobus R, Newton L, Kampa B, Rossa J, Latham S, Nichita NB, Dwek RA, Zitzmann N. Uptake and trafficking of liposomes to the endoplasmic reticulum. FASEB J. 2010;24(6):1866–78.PubMedCrossRefGoogle Scholar
  121. 121.
    Di Y, Wasan EK, Cawthray J, Wasan KM. Scavenger receptor class BI (SR-BI) mediates uptake of CPX-351 into K562 leukemia cells. Drug Dev Ind Pharm. 2019;45(1):21–6.PubMedCrossRefGoogle Scholar
  122. 122.
    Pont I, Calatayud-Pascual A, López-Castellano A, Albelda EP, García-España E, Martí-Bonmatí L, Frias JC, Albelda MT. Anti-angiogenic drug loaded liposomes: Nanotherapy for early atherosclerotic lesions in mice. PLoS One. 2018;13(1):e0190540.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Rensen PC, Gras JC, Lindfors EK, van Dijk KW, Jukema JW, van Berkel TJ, Biessen EA. Selective targeting of liposomes to macrophages using a ligand with high affinity for the macrophage scavenger receptor class A. Curr Drug Discov Technol. 2006;3(2):135–44.PubMedCrossRefGoogle Scholar
  124. 124.
    Gan C, Wang K, Tang Q, Chen Y. Comparative investigation on the sizes and scavenger receptor binding of human native and modified lipoprotein particles with atomic force microscopy. J Nanobiotechnol. 2018;16(1):25.CrossRefGoogle Scholar
  125. 125.
    Zhang X, Huang G. Synthetic lipoprotein as nano-material vehicle in the targeted drug delivery. Drug Deliv. 2017;24(2):16–21.PubMedCrossRefGoogle Scholar
  126. 126.
    Shaw JM, Futch WS, Schook LB. Induction of macrophage antitumor activity by acetylated low density lipoprotein containing lipophilic muramyl tripeptide. Proc Natl Acad Sci. 1988;85(16):6112–6.PubMedCrossRefGoogle Scholar
  127. 127.
    Kreuter J, Hekmatara T, Dreis S, Vogel T, Gelperina S, Langer K. Covalent attachment of apolipoprotein AI and apolipoprotein B-100 to albumin nanoparticles enables drug transport into the brain. J Control Release. 2007;118(1):54–8.PubMedCrossRefGoogle Scholar
  128. 128.
    Singh RP, Ramarao P. Cellular uptake, intracellular trafficking and cytotoxicity of silver nanoparticles. Toxicol Lett. 2012;213(2):249–59.PubMedCrossRefGoogle Scholar
  129. 129.
    Shannahan JH, Podila R, Aldossari AA, Emerson H, Powell BA, Ke PC, Rao AM, Brown JM. Formation of a protein corona on silver nanoparticles mediates cellular toxicity via scavenger receptors. Toxicol Sci. 2014;143(1):136–46.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Aldossari AA, Shannahan JH, Podila R, Brown JM. Scavenger receptor B1 facilitates macrophage uptake of silver nanoparticles and cellular activation. J Nanopart Res. 2015;17(7):313.CrossRefGoogle Scholar
  131. 131.
    Lipinski MJ, Frias JC, Amirbekian V, Briley-Saebo KC, Mani V, Samber D, Abbate A, Aguinaldo JG, Massey D, Fuster V, Vetrovec GW. Macrophage-specific lipid-based nanoparticles improve mri detection and characterization of human atherosclerosis. J Am Coll Cardiol Img. 2009;2(5):637–47.CrossRefGoogle Scholar
  132. 132.
    Hirano S, Kanno S, Furuyama A. Multi-walled carbon nanotubes injure the plasma membrane of macrophages. Toxicol Appl Pharmacol. 2008;232(2):244–51.PubMedCrossRefGoogle Scholar
  133. 133.
    Kanno S, Furuyama A, Hirano S. A murine scavenger receptor MARCO recognizes polystyrene nanoparticles. Toxicol Sci. 2007;97(2):398–406.PubMedCrossRefGoogle Scholar
  134. 134.
    Orr GA, Chrisler WB, Cassens KJ, Tan R, Tarasevich BJ, Markillie LM, Zangar RC, Thrall BD. Cellular recognition and trafficking of amorphous silica nanoparticles by macrophage scavenger receptor A. Nanotoxicology. 2011;5(3):296–311.PubMedCrossRefGoogle Scholar
  135. 135.
    Hamilton R, Buckingham S, Holian A. The effect of size on Ag nanosphere toxicity in macrophage cell models and lung epithelial cell lines is dependent on particle dissolution. Int J Mol Sci. 2014;15(4):6815–30.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Hsu CS, Hsu SJ, Liu WL, Chen DS, Kao JH. Association of SCARB1 Gene polymorphisms with virological response in chronic hepatitis C patients receiving pegylated interferon plus ribavirin therapy. Sci Rep. 2016;6:32303.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    SR-BI and Antiviral Treatment Response in HCV [Internet]. Available from: https://clinicaltrials.gov/show/NCT02714712. Accessed on 14th Jun 2019.
  138. 138.
    Genetic and Metabolism of Post-prandial HDL Particles (HDL-PP) [Internet]. Available from: https://clinicaltrials.gov/show/NCT03109067. Accessed on 14th Jun 2019.
  139. 139.
    Mechanisms of Chronic Kidney Disease (CKD)-Induced Foam Cell Formation [Internet]. Available from: https://clinicaltrials.gov/show/NCT01671605. Accessed on 14th Jun 2019.
  140. 140.
    A Study of Immunological Biomarkers as Predictors of Cardiovascular Events (BIOKID) [Internet]. Available from: https://clinicaltrials.gov/show/NCT02894060. Accessed on 14th Jun 2019.
  141. 141.
    Zheng Y, Liu Y, Jin H, Pan S, Qian Y, Huang C, Zeng Y, Luo Q, Zeng M, Zhang Z. Scavenger receptor B1 is a potential biomarker of human nasopharyngeal carcinoma and its growth is inhibited by HDL-mimetic nanoparticles. Theranostics. 2013;3(7):477–86.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2019

Authors and Affiliations

  • Amit S. Lokhande
    • 1
  • Priyanka Jahagirdar
    • 1
  • Prajakta Dandekar
    • 2
  • Padma V. Devarajan
    • 2
    Email author
  1. 1.Department of Pharmaceutical Sciences & TechnologyInstitute of Chemical TechnologyMumbaiIndia
  2. 2.Department of Pharmaceutical SciencesInsitute of Chemical Technology, Deemed University, Elite Status and Centre of Excellence, Government of MaharashtraMumbaiIndia

Personalised recommendations