Advertisement

Intracellular Delivery: An Overview

  • Dhanashree H. Surve
  • Prajakta Dandekar
  • Padma V. Devarajan
  • Anil B. JindalEmail author
Chapter
Part of the AAPS Advances in the Pharmaceutical Sciences Series book series (AAPS, volume 39)

Abstract

Targeted intracellular delivery is gaining importance, especially for improved therapy of cancer and intracellular infections. Endocytosis or cellular internalization, a physiological process for intracellular delivery of nutrients or destruction of pathogens, involves two major pathways, namely phagocytosis or cell eating, which enable uptake of solid particles and pinocytosis or cell drinking. Pinocytosis includes fluid-phase endocytosis (macropinocytosis/micropinocytosis) and receptor-mediated endocytosis (RME). While phagocytosis, macropinocytosis, and micropinocytosis are nonselective, RME is a selective process of internalization, which is triggered by association of the receptor with specific ligands. Among endocytic processes, phagocytosis and RME are relied on for nanocarrier-based targeted drug delivery. This chapter describes various pathways with emphasis on phagocytosis and strategies to bypass lysosomal destruction of drugs. A major focus, however, is RME with a detailed discussion on clathrin, caveolin, and clathrin- and caveolin-independent pathways, and also provides a list of receptors based on the internalization pathway. Targeted delivery of drugs to subcellular organelles is also discussed. The discussion on the impact of nanocarrier properties on cellular internalization of nanocarriers throws light on factors to be addressed during nanoparticle design. This chapter thereby enables a comprehensive understanding of intracellular uptake in the context of targeted drug delivery.

Keywords

Clathrin Caveolin Endosome Intracellular delivery Phagocytosis Pinocytosis Receptor-mediated endocytosis 

Abbreviations

AP2

Activating protein 2

BSA

Bovine serum albumin

CALM

Clathrin assembly lymphoid myeloid leukemia protein

CAM

Cell adhesion molecule

CavME

Caveolae-mediated endocytosis

Cdc42

Cell division control protein 42 homolog

CDR

Circular dorsal ruffle

CLIC

Clathrin-independent tubulovesicular carriers

CME

Clathrin-mediated endocytosis

CPP

Cell-penetrating peptide

CTX

Cholera toxin

Dia2

Dynamin 2

DOX

Doxorubicin

DRF

Diaphanous-related formins

EEA1

Early endosome antigen 1

EGF

Endothelial growth factor

EPR

Enhanced permeation and retention

EPS15

Epidermal growth factor receptor pathway substrate 15

ESCRT

Endosomal sorting complex required for transport

FA-M-β-CD

Folate-appended methyl-β cyclodextrin

FCH

Fer/cdc42 interacting protein 4 (CIP4) homology

FcR

Fc receptors

GAP

GTPase activating protein

GDI

Guanine nucleotide dissociation inhibitor

GEEC-GPI

AP-enriched early endosomal compartments

GEF

Guanine nucleotide exchange factor

GRAF1

GTPase regulator associated with focal adhesion kinase 1

HGF

Hepatocyte growth factor

HIV

Human immunodeficiency virus

HUVEC

Human umbilical vascular endothelial cells

Ig

Immunoglobulin

IHME

The Institute of Health Metrics and Evaluation

ITAM

Immunoreceptor tyrosine-based activation

LAMP

Lysosomal-associated membrane proteins

LDL

Low-density lipoprotein

MMP

Matrix metalloproteinase

NCF

1-Neutrophil cytosol factor 1/p47-phox

NCF-2

Neutrophil cytosol factor 2/p67-phox

NCF-4

Neutrophil cytosol factor 4/p40-phox

NO

Nitric oxide radicals

NOS2

Nitric oxide synthase 2

NRAMP-1

Natural resistance-associated macrophage protein 1

PDGF

Platelet derived growth factor

PEG

Polyethylene glycol

PIP2

Phosphatidyinositol-3,4-bisphosphonate

PIP3

Phosphatidylinositol-3,4,5-phosphate

PLGA

Poly(lactic-co-glycolic)acid

Rac1

Ras-related C3 toxin protein

RBC

Red blood cell

RES

Reticuloendothelial system

RILP

Rab interacting lysosomal protein

RME

Receptor-mediated endocytosis

ROS

Reactive oxygen species

RTK

Rho tyrosine kinase

SMTP

Spontaneous membrane translocating peptide

SV40

Simian virus 40

Syk

Spleen-associated tyrosine kinase

TGF

Tumor growth factor

TPP

Triphosphonium ion

V-ATPase

Vacuolar type H+-ATPase

Vpu

Viral protein U

VSP

Vegetative storage protein

WASP

Wiskott-Aldrich syndrome protein

WHO

World Health Organization

References

  1. 1.
    R MRHR. Cancer. 2018. [cited 2018 May 27]. Available from: https://ourworldindata.org/cancer.
  2. 2.
    Fact sheets: Infectious diseases. [cited 2018 May 27]. Available from: http://www.who.int/topics/infectious_diseases/factsheets/en/.
  3. 3.
    Karnofsky DA. Mechanism of action of anticancer drugs at a cellular level. CA Cancer J Clin. 2009;18(4):232–4.CrossRefGoogle Scholar
  4. 4.
    Torchilin VP. Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Annu Rev Biomed Eng. 2006;8:343–75.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Zazo H, Colino CI, Lanao JM. Current applications of nanoparticles in infectious diseases. J Control Release. 2016;224:86–102.PubMedCrossRefGoogle Scholar
  6. 6.
    Iversen T, Skotland T, Sandvig K. Endocytosis and intracellular transport of nanoparticles : Present knowledge and need for future studies. Nano Today. 2011;6(2):176–85.CrossRefGoogle Scholar
  7. 7.
    Goldstein J, Anderson R, Brown M. Receptor-mediated endocytosis and the cellular uptake of low density lipoprotein. In: Membrane recycling. Ciba: Pitman Books Ltd; 1982. p. 77–95.Google Scholar
  8. 8.
    Salatin S, Yari Khosroushahi A. Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles. J Cell Mol Med. 2017;21(9):1668–86.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Yameen B, Il CW, Vilos C, Swami A, Shi J, Farokhzad OC. Insight into nanoparticle cellular uptake and intracellular targeting. J Control Release. 2014;190:485–99.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Maruyama K. Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects. Adv Drug Deliv Rev. 2011;63(3):161–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Bloomfield G, Kay RR. Uses and abuses of macropinocytosis. J Cell Sci. 2016;129:2697–705.PubMedCrossRefGoogle Scholar
  12. 12.
    Jones AT. Macropinocytosis: Searching for an endocytic identity and role in the uptake of cell penetrating peptides. J Cell Mol Med. 2007;11(4):670–84.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Huang JL, Jiang G, Song QX, Gu X, Hu M, Wang XL, et al. Lipoprotein-biomimetic nanostructure enables efficient targeting delivery of siRNA to Ras-activated glioblastoma cells via macropinocytosis. Nat Commun. 2017;8(May):1–18.Google Scholar
  14. 14.
    Orth JD, Mcniven MA, Orth JD, Mcniven MA. Get off my back ! Rapid receptor internalization through circular dorsal ruffles. Cancer Res. 2006;66:11094–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Hoon J, Wong W, Koh C. Functions and regulation of circular dorsal ruffles. Mol Cell Biol. 2012;32(21):4246–57.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Peleg B, Disanza A, Scita G, Gov N. Propagating cell-membrane waves driven by curved activators of actin propagating cell-membrane waves driven by curved activators of actin polymerization. PLoS One. 2011;6(4):1–11.CrossRefGoogle Scholar
  17. 17.
    Ekholm R, Ericson LE. The structural basis of thyroid function. In: Thyroid diseases: basic science, pathology, clinical and laboratory diagnoses. Boston: Butterworths; 1994. p. 17–51.Google Scholar
  18. 18.
    Rabinovitch M. Professional and non-professional phagocytes: an introduction. Trends Cell Biol. 1995;5:85–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Kaminskas LM, Boyd BJ. Nanosized drug delivery vectors and the reticuloendothelial system. In: Intracellular delivery: fundamentals and applications, fundamental biomedical technologies. Dordrechts: Springer;2011.CrossRefGoogle Scholar
  20. 20.
    Winkelstein JA. Opsonins: their function, identity, and clinical significance. J Pediatr. 1973;82(5):747–53.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    David U, Goodridge H. Information processing during phagocytosis. Nat Rev Immunol. 2017;12(7):492–502.Google Scholar
  22. 22.
    Charles A Janeway, Jr, Paul Travers, Mark Walport and MJ Schlomchik. The complement system and innate immunity. In: Immunobiology: the immune system in health and disease 5th ed. New York: Garland Science; 2001.Google Scholar
  23. 23.
    Celik I, Stover C, Botto M, Thiel S, Tzima S, Walport M, et al. Role of the classical pathway of complement activation in experimentally induced polymicrobial peritonitis. Infect Immun. 2001;69(12):7304–9.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Moalli F, Jaillon S, Inforzato A, Sironi M, Bottazzi B, Mantovani A, et al. Pathogen recognition by the long pentraxin PTX3. J Biomed Biotechnol. 2011;2011:1–15.CrossRefGoogle Scholar
  25. 25.
    Lu J, Teh C, Kishore U, Reid KBM. Collectins and ficolins: sugar pattern recognition molecules of the mammalian innate immune system. Biochim Biophys Acta Gen Subj. 2002;1572:387–400.CrossRefGoogle Scholar
  26. 26.
    Frank MM, Fries LF. Complement interactions and functions. Immunol Today. 1991;12(9):322–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Park H, Chan MM, Iritani BM. Hem-1: putting the ‘“ WAVE ”’ into actin polymerization during an immune response. FEBS Lett. 2010;584:4923–32.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Gordon S. Phagocytosis: an immunobiological process. Immun Rev. 2016;44(3):463–75.Google Scholar
  29. 29.
    Jovic M, Sharma M, Rahajeng J, Caplan S. The early endosome: a busy sorting station for proteins at the crossroads. Histol Histopathol. 2010;25(1):99–112.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Guerra F, Bucci C. Multiple Roles of the Small GTPase Rab7. Cells. 2016;5(34):1–28.Google Scholar
  31. 31.
    Vieira OV, Bucci C, Harrison RE, Trimble WS, Lanzetti L, Gruenberg J, et al. Modulation of Rab5 and Rab7 recruitment to phagosomes by phosphatidylinositol 3-kinase. Mol Cell Biol. 2003;23(7):2501–14.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Rosales C, Querol EU. Control of phagocytosis by microbial pathogens. Front Immunol. 2017;8:1–23.CrossRefGoogle Scholar
  33. 33.
    Flannagan RS, Cosío G, Grinstein S. Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat Rev Microbiol. 2009;7(May):355–66.PubMedCrossRefGoogle Scholar
  34. 34.
    Rosales C, Uribe-querol E. Phagocytosis: a fundamental process in immunity.BioMed Research International. 2017;2017:1–18.CrossRefGoogle Scholar
  35. 35.
    Slauch JM. How does the oxidative burst of macrophages kill bacteria? Still an open question. Mol Microbiol. 2012;80(3):580–3.CrossRefGoogle Scholar
  36. 36.
    Schaible UE. Macrophage defense mechanisms against intracellular bacteria. Immunol Rev. 2015;264:182–203.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Lehrer RI, Bevins CL. Defensins and other proteins. In: Mucosale barrier: development and physiology of mucosal defense; 2003. p. 95–110.Google Scholar
  38. 38.
    Ponzoni M, Pastorino F. Targeting macrophages as a potential therapeutic intervention: impact on inflammatory diseases and cancer. Int J Mol Sci. 2018;19:1–17.CrossRefGoogle Scholar
  39. 39.
    Visser JG, Du A, Van Staden P, Smith C. Harnessing macrophages for controlled-release drug delivery: lessons from microbes. Front Pharmacol. 2019;10:1–18.CrossRefGoogle Scholar
  40. 40.
    Visser JG, Smith C. Development of transendothelial shuttle by macrophage modification. J Tissue Eng Regen Med. 2018;12(4):e1889–98.PubMedCrossRefGoogle Scholar
  41. 41.
    Melcarne C, Lemaitre B, Kurant E. Phagocytosis in drosophila: from molecules and cellular machinery to physiology. Insect Biochem Mol Biol. 2019;109:1–12.PubMedCrossRefGoogle Scholar
  42. 42.
    Mayorga LS, Piit A, Stahl PD. Receptor-mediated endocytosis and phagocytosis share common determinants for intracellular trafficking. In: Mononuclear phagocytes. Switzerland: Springer nature; 1992. p. 214–23.CrossRefGoogle Scholar
  43. 43.
    Antony AC. Folate receptors. Annu Rev Nutr. 1996;16:501–21.PubMedCrossRefGoogle Scholar
  44. 44.
    Abbaspour N, Hurrell R, Kelishadi R. Review of iron and its importance on human health. J Res Med Sci. 2014;19:164–74.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Nigel E. Kupffer cells and their function. Liver. 1987;7(4):63–75.Google Scholar
  46. 46.
    Gordon SB, Read RC. Macrophage defences against respiratory tract infections. Br Med Bull. 2002;61:45–61.PubMedCrossRefGoogle Scholar
  47. 47.
    Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol. 2001;1:135–46.PubMedCrossRefGoogle Scholar
  48. 48.
    Hillaireau H, Couvreur P. Nanocarriers’ entry into the cell: relevance to drug delivery. Cell Mol Life Sci. 2009;66:2873–96.PubMedCrossRefGoogle Scholar
  49. 49.
    Brown V, Greene M. Molecular and cellular mechanisms of receptor-mediated endocytosis. DNA Cell Biol. 1991;10(6):399–409.PubMedCrossRefGoogle Scholar
  50. 50.
    Canton I, Battaglia G. Molecular mechanism and physiological functions of clathrin – mediated endocytosis. Nat Publ Gr. 2011;12(8):517–33.Google Scholar
  51. 51.
    Battaglia ICG. Endocytosis at the nanoscale. Chem Soc Rev. 2012;41:2718–39.PubMedCrossRefGoogle Scholar
  52. 52.
    Kaksonen M, Roux A. Mechanisms of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol. 2018:1–14.Google Scholar
  53. 53.
    Hinners I, Tooze SA. Changing directions: clathrin-mediated transport between the Golgi and endosomes. J Cell Sci. 2003;4:763–71.CrossRefGoogle Scholar
  54. 54.
    Bareford LM, Swaan PW. Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev. 2007;59(8):748–58.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Davidson APJM. Nanovehicular intracellular delivery systems. J Pharm Sci. 2008;97(9):3518–90.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Klumperman J, Raposo G. The complex ultrastructure of the endolysosomal system. Cold Spring Harb Perspect Biol. 2014;6:4–20.CrossRefGoogle Scholar
  57. 57.
    Wang Z, Tiruppathi C, Minshall RD, Malik AB. Size and dynamics of caveolae studied using nanoparticles in living endothelial cells. ACS Nano. 2009;3(12):4110–6.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Nabi IR, Le PU. Caveolae/raft-dependent endocytosis. J Cell Biol. 2003;161(4):673–7.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Kumari S, Mg S, Mayor S. Endocytosis unplugged: multiple ways to enter the cell. Cell Res. 2010;(3):256–75.PubMedCrossRefGoogle Scholar
  60. 60.
    Otto GP, Nichols BJ. The roles of flotillin microdomains – endocytosis and beyond. J Cell Sci. 2011;124:3833–940.CrossRefGoogle Scholar
  61. 61.
    Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010;75(1):1–18.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Meister M, Tikkanen R. Endocytic trafficking of membrane-bound cargo: a flotillin point of view. Membranes (Basel). 2014;4(3):356–71.CrossRefGoogle Scholar
  63. 63.
    Vercauteren D, Piest M, Van Der Aa LJ, Al Soraj M, Jones AT, Engbersen JFJ, et al. Flotillin-dependent endocytosis and a phagocytosis-like mechanism for cellular internalization of disul fi de-based poly (amido amine)/DNA polyplexes. Biomaterials. 2011;32(11):3072–84.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Chi X, Wang S, Huang Y, Stamnes M, Chen J. Roles of Rho GTPases in intracellular transport and cellular transformation. Int J Mol Sci. 2013;14(4):7089–108.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Ridley AJ. Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol. 2006;16(10):522–9.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Mellado M, Jose MR-F, Martinez-Alonzo C, Manes S, del Real G. Prevention of HIV-1 infection by inhibition of Rho-mediated reorganization and/or content alteration of cell membrane raft. 2007;1:1–9.Google Scholar
  67. 67.
    Gerbal-chaloin S, Gondeau C, Aldrian-herrada G. First step of the cell-penetrating peptide mechanism involves Rac1 GTPase-dependent actin-network remodelling. Biol Cell. 2007;99:223–38.PubMedCrossRefGoogle Scholar
  68. 68.
    Howes MT, Kirkham M, Riches J, Cortese K, Walser PJ, Simpson F, et al. Clathrin-independent carriers form a high capacity endocytic sorting system at the leading edge of migrating cells. J Biol Cell. 2010;190(4):675–91.CrossRefGoogle Scholar
  69. 69.
    Waneck L, Brown D. Glycosyl-phosphatidylinositol-anchored membrane proteins. J Am Soc Nephrol. 1992;3:895–906.PubMedGoogle Scholar
  70. 70.
    Onodera R, Motoyama K, Okamatsu A, Higashi T, Arima H. Potential use of folate-appended methyl- b -Cyclodextrin as an anticancer agent. Scientific Reports. 2013; 3:1–9.Google Scholar
  71. 71.
    Mayor S, Parton RG, Donaldson JG. Clathrin-independent pathways of endocytosis. Cold Spring Harb Perspect Biol. 2014; 6(6):1–20.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Fu A, Tang R, Hardie J, Farkas ME, Rotello VM. Promises and pitfalls of intracellular delivery of proteins. Bioconjug Chem. 2014;25(9):1602–8.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Chou LYT, Ming K, Chan WCW. Strategies for the intracellular delivery of nanoparticles. Chem Soc Rev. 2011;40(1):233–45.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Biswas S, Torchilin VP. Nanopreparations for organelle-specific delivery in cancer. Adv Drug Deliv Rev. 2014;66:26–41.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Han Q, Wang W, Jia X, Qian Y, Li Q, Wang Z, et al. Switchable liposomes: targeting-peptide-functionalized and pH-triggered cytoplasmic delivery. ACS Appl Mater Interfaces. 2016;8(29):18658–63.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Rao SK, Reddy MK, Horning JL, Labhasetwar V. TAT-conjugated nanoparticles for the CNS delivery of anti-HIV drugs. Biomterials. 2008;29(33):4429–38.CrossRefGoogle Scholar
  77. 77.
    Khalil IA, Kogure K, Futaki S, Harashima H. High density of octaarginine stimulates macropinocytosis leading to efficient intracellular trafficking for gene expression. J Biol Chem. 2006;281(6):3544–51.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Schiffelers RM, Ansari A, Xu J, Zhou Q, Tang Q, Storm G, et al. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res. 2004;32(19):1–10.CrossRefGoogle Scholar
  79. 79.
    Abrami L, Lindsay M, Parton RG, Leppla SH, Van Der Goot FG. Membrane insertion of anthrax protective antigen and cytoplasmic delivery of lethal factor occur at different stages of the endocytic pathway. J Cell Biol. 2004;166(5):645–51.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Le Blanc I, Luyet P, Pons V, Ferguson C, Emans N, Petiot A, et al. Endosome-to-cytosol transport of viral nucleocapsids. Cell Biol. 2005;7(7):653–64.Google Scholar
  81. 81.
    Dermine J, Goyette G, Houde M, Turco SJ, Desjardins M. Leishmania donovani lipophosphoglycan disrupts phagosome microdomains in J774 macrophages. Cell Microbiol. 2005;7(9):1263–70.PubMedCrossRefGoogle Scholar
  82. 82.
    Schnupf P, Zhou J, Varshavsky A, Portnoy DA. Listeriolysin O secreted by Listeria monocytogenes into the host cell cytosol is degraded by the N-end rule pathway. Infect Immun. 2007;75(11):5135–47.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Ciocchini E, Arellano-reynoso B, Lapaque N, Salcedo S, Briones G, Gorvel J, et al. Cyclic b -1, 2-glucan is a brucella virulence factor required for intracellular survival. Nat Immunol. 2005;6(6):618–25.PubMedCrossRefGoogle Scholar
  84. 84.
    Gruenberg J. Mechanisms of pathogen entry through the endosomal compartments. Nat Rev Mol Cell Biol. 2006;7:495–504.PubMedCrossRefGoogle Scholar
  85. 85.
    Deretic V, Singh S, Master S, Harris J, Roberts E, Kyei G, et al. Mycobacterium tuberculosis inhibition of phagolysosome biogenesis and autophagy as a host defence mechanism. Cell Microbiol. 2006;8:719–27.PubMedCrossRefGoogle Scholar
  86. 86.
    Epand RM. Fusion peptides and the mechanism of viral fusion. Biochimica. 2003;1614:116–21.Google Scholar
  87. 87.
    Donald JE, Zhang Y, Fiorin G, Carnevale V, Slochower DR, Gai F. Transmembrane orientation and possible role of the fusogenic peptide from parainfluenza virus 5 (PIV5) in promoting fusion. PNAS. 2011;108(10):3958–63.PubMedCrossRefGoogle Scholar
  88. 88.
    Munyendo WLL, Lv H, Benza-ingoula H, Baraza LD, Zhou J. Cell penetrating peptides in the delivery of biopharmaceuticals. Biomolecules. 2012;2:187–202.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Nakase I, Kogure K, Harashima H. Application of a fusiogenic peptide GALA for intracellular delivery. Methods Mol Biol. 2011;683:525–33.PubMedCrossRefGoogle Scholar
  90. 90.
    Wang T, Yang S, Petrenko VA, Torchilin VP. Cytoplasmic delivery of liposomes into MCF-7 breast cancer cells mediated by cell-specific Phage fusion coat protein. Mol Pharm. 2010;7(4):1149–58.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Oliveira S, van Rooy I, Kranenburg O, Storm G, Schiffelers RM. Fusogenic peptides enhance endosomal escape improving siRNA-induced silencing of oncogenes. Int J Pharm. 2007;331(2):211–4.PubMedCrossRefGoogle Scholar
  92. 92.
    Ju E, Park K, Su K, Kim J, Yang J, Kong J, et al. Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives. J Control Release. 2010;141(1):2–12.CrossRefGoogle Scholar
  93. 93.
    Hafez I, Maurer N, Cullis P. On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids. Gene Ther. 2001;8:1188–96.PubMedCrossRefGoogle Scholar
  94. 94.
    Basha G, Novobrantseva TI, Rosin N, Tam YYC, Hafez IM, Wong MK, et al. Influence of cationic lipid composition on gene silencing properties of lipid nanoparticle formulations of siRNA in antigen-presenting cells. Mol Ther. 2011;19(12):2186–200.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Jin J, Bae KH, Yang H, Lee SJ, Kim H, Kim Y, et al. In vivo specific delivery of c-Met siRNA to glioblastoma using cationic solid lipid nanoparticles. Bioconjug Chem. 2011;22:2568–72.PubMedCrossRefGoogle Scholar
  96. 96.
    Varkouhi AK, Scholte M, Storm G, Haisma HJ. Endosomal escape pathways for delivery of biologicals. J Control Release. 2011;151(3):220–8.PubMedCrossRefGoogle Scholar
  97. 97.
    He J, Kauffman WB, Fuselier T, Naveen SK, Voss TG, Hristova K, et al. Direct cytosolic delivery of polar cargo to cells by spontaneous membrane-translocating peptides. J Biol Chem. 2013;288(41):29974–86.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Villegas E. Pore-forming peptides from spiders. Toxin Rev. 2005;24:347–59.CrossRefGoogle Scholar
  99. 99.
    Lai P, Pai C, Peng C, Shieh M, Berg K, Lou P. Enhanced cytotoxicity of saporin by polyamidoamine dendrimer conjugation and photochemical internalization. J Biomed Mater Res. 2007; Part A: 87(1)147–55.CrossRefGoogle Scholar
  100. 100.
    Alonso MA, Millán J. The role of lipid rafts in signalling and membrane trafficking in T lymphocytes. J Cell Sci. 2001;114(Pt 22):3957–65.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Partlow KC, Lanza GM, Wickline SA. Exploiting lipid raft transport with membrane targeted nanoparticles: a strategy for cytosolic drug delivery. Biomaterials. 2008;29(23):3367–75.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Jaspreet K, Vasir VL. Biodegradable nanoparticles for cytosolic delivery of therapeutics. Adv Drug Deliv Rev. 2008;59(8):718–28.Google Scholar
  103. 103.
    Chu Z, Miu K, Lung P, Zhang S, Zhao S, Chang HC, et al. Rapid endosomal escape of prickly nanodiamonds: Implications for gene delivery. Sci Rep. 2015;5:1–8.Google Scholar
  104. 104.
    Tan Y, Zhu Y, Zhao Y, Wen L, Meng T, Liu X, et al. Mitochondrial alkaline pH-responsive drug release mediated by Celastrol loaded glycolipid-like micelles for cancer therapy. Biomaterials. 2017; Available from:  https://doi.org/10.1016/j.biomaterials.2017.07.036.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Xu Y, Wang S, Chan HF, Liu Y, Li H, He C, et al. Triphenylphosphonium-modified Poly ( ethylene glycol ) -poly ( ε -caprolactone ) Micelles for Mitochondria- targeted Gambogic Acid Delivery. Int J Pharm. 2017; Available from:  https://doi.org/10.1016/j.ijpharm.2017.01.064PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Chan MS, Liu LS, Leung HM, Lo PK. Cancer-cell-specific mitochondria-targeted drug delivery by dual-ligand-functionalized nanodiamonds circumvent drug resistance. ACS Appl Mater Interfaces. 2017;9(13):11780–9.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Zhou J, Zhao W, Ma X, Ju R, Li X, Li N, et al. The anticancer efficacy of paclitaxel liposomes modified with mitochondrial targeting conjugate in resistant lung cancer. Biomaterials. 2013;34:3626–38.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Wang T, Hou J, Su C, Zhao L, Shi Y. Hyaluronic acid-coated chitosan nanoparticles induce ROS-mediated tumor cell apoptosis and enhance antitumor efficiency by targeted drug delivery via CD44. J Nanobiotechnol. 2017;15(1):1–12.CrossRefGoogle Scholar
  109. 109.
    Qu Q, Ma X, Zhao Y. Targeted delivery of doxorubicin to mitochondria using mesoporous silica nanoparticle nanocarriers. Nanoscale. 2013; 7(40):1–9.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Yamada Y, Munechika R, Kawamura E, Sakurai Y, Sato Y, Harashima H. Mitochondrial delivery of doxorubicin using MITO-porter kills drug-resistant renal cancer cells via mitochondrial toxicity. J Pharm Sci. 2017;106(9):2428–37.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    López V, Villegas MR, Rodríguez V, Villaverde G, Lozano D, Baeza A, et al. Janus mesoporous silica nanoparticles for dual targeting of tumor cells and mitochondria. ACS Appl Mater Interfaces. 2017;9(32):26697–706.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Bukrinsky M. A hard way to the nucleus. Mol Med. 2004;10(1):1–5.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Rajendran L, Knölker HJ, Simons K. Subcellular targeting strategies for drug design and delivery. Nat Rev Drug Discov. 2010;9(1):29–42.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Singh L, Kruger HG, Maguire GEM, Govender T, Parboosing R. Development and evaluation of peptide-functionalized gold nanoparticles for hiv integrase inhibition. Int J Pept Res Ther. 2018;0(0):1–12.Google Scholar
  115. 115.
    Pan L, He Q, Liu J, Chen Y, Zhang L, Shi J. Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J Am Chem Soc. 2012;134:5722–5.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Zhou Z, Liu Y, Wu L, Li L, Huang Y. Enhanced nuclear delivery of anti-cancer drugs using micelles containing releasable membrane fusion peptide and nuclear-targeting retinoic acid. J Mater Chem B. 2017;5(34):7175–85.CrossRefGoogle Scholar
  117. 117.
    Jing Y, Xiong X, Ming Y, Zhao J, Guo X, Yang G. A multifunctional micellar nanoplatform with pH-triggered cell penetration and nuclear targeting for effective cancer therapy and inhibition to lung metastasis. Adv Healthc Mater. 2018;1700974:1–13.Google Scholar
  118. 118.
    Cerrato CP, Künnapuu K, Langel Ü. Cell-penetrating peptides with intracellular organelle targeting. Expert Opin Drug Deliv. 2017;14(2):245–55.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Ozcan L, Tabas I. Role of endoplasmic reticulum stress in metabolic disease and other disorders. Annu Rev Biochem. 2005;74:317–28.CrossRefGoogle Scholar
  120. 120.
    Zakariah M, Khan S, Choudhary AA, Rolfo C, Ben Ismail MM, Alotaibi YA. To decipher the mycoplasma hominis proteins targeting into the endoplasmic reticulum and their next-generation sequencing data. Molecules. 2018; 23(5):1–12.PubMedCentralCrossRefPubMedGoogle Scholar
  121. 121.
    Boelens J, Lust S, Offner F, Bracke ME, Vanhoecke BW. Review. The endoplasmic reticulum: a target for new anticancer drugs. In Vivo. 2007;21(2):215–26.PubMedGoogle Scholar
  122. 122.
    Inoue T, Tsai B. How viruses use the endoplasmic reticulum for entry, replication, and assembly. Cold Spring Harb Perspect Biol. 2013;5(1):1–17.CrossRefGoogle Scholar
  123. 123.
    Pan T, Song W, Gao H, Li T, Cao X, Zhong S, et al. miR-29b-loaded gold nanoparticles targeting to the endoplasmic reticulum for synergistic promotion of osteogenic differentiation. Appl Mater Interfaces. 2016;8(30):19217–27.CrossRefGoogle Scholar
  124. 124.
    Sneh-Edri H, Likhtenshtein D, Stepensky D. Intracellular targeting of PLGA nanoparticles encapsulating antigenic peptide to the endoplasmic reticulum of dendritic cells and its effect on antigen cross-presentation in vitro. Mol Pharm. 2011;8(4):1266–75.PubMedCrossRefGoogle Scholar
  125. 125.
    Zhang J, Sun A, Xu R, Tao X, Dong Y, Lv X, et al. Cell-penetrating and endoplasmic reticulum-locating TAT-IL-24-KDEL fusion protein induces tumor apoptosis. J Cell Physiol. 2016;231(1):84–93.PubMedCrossRefGoogle Scholar
  126. 126.
    Chang MY, Shiau AL, Chen YH, Chang CJ, Chen HHW, Wu CL. Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice. Cancer Sci. 2008;99(7):1479–84.PubMedCrossRefGoogle Scholar
  127. 127.
    Behzadi S, Serpooshan V, Tao W, Hamaly MA, Mahmoud Y, Dreaden EC, et al. Cellular uptake of nanoparticles: journey inside the cell. Chem Soc. 2018;46(14):4218–44.CrossRefGoogle Scholar
  128. 128.
    Waters KM, Masiello LM, Zangar RC, Tarasevich BJ, Karin NJ, Quesenberry RD, et al. Macrophage responses to silica nanoparticles are highly conserved across particle sizes. Toxicol Sci. 2009;107(2):553–69.PubMedCrossRefGoogle Scholar
  129. 129.
    Cooley M, Sarode A, Hoore M, Fedosov DA, Mitragotri S, Sen Gupta A. Influence of particle size and shape on their margination and wall-adhesion: implications in drug delivery vehicle across nano-to-micro scale. Nanoscale. 2018; 10(32):15350–64.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Rejman J, Oberle V, Zuhorn IS, Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J. 2004;169:159–69.CrossRefGoogle Scholar
  131. 131.
    Huang K, Ma H, Liu J, Huo S, Kumar A, Wei T, et al. Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. ACS Nano. 2012;6(5):4483–93.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Rausch K, Reuter A, Fischer K, Schmidt M. Evaluation of nanoparticle aggregation in human blood serum. Biomacromolecules. 2010;11(11):2836–9.PubMedCrossRefGoogle Scholar
  133. 133.
    Albanese A, Chan WC. Effect of gold nanoparticle aggregation on cell uptake and toxicity BT. ACS Nano. 2011;5(7):5478–89.PubMedCrossRefGoogle Scholar
  134. 134.
    Salmaso S, Caliceti P. Stealth properties to improve therapeutic efficacy of drug nanocarriers. J Drug Deliv. 2013;2013:1–18.CrossRefGoogle Scholar
  135. 135.
    Storm G, Belliot S, Daemenb T, Lasic DD. Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Deliv Rev. 1995;17(95):31–48.CrossRefGoogle Scholar
  136. 136.
    Owens DE, Peppas NA. Opsonization, biodistribution and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307:93–102.PubMedCrossRefGoogle Scholar
  137. 137.
    Mcsweeney MD, Versfeld ZC, Carpenter DM, Lai SK. Physician awareness of immune responses to polyethylene glycol-drug conjugates. Clin Transl Sci. 2018;11:162–5.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Amoozgar Z, Yeo Y. Recent advances in stealth coating of nanoparticle drug delivery systems Zohreh. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013;4(2):219–33.CrossRefGoogle Scholar
  139. 139.
    Podlekareva K, Akmal F. Palmar-plantar erythrodysesthesia associated with chemotherapy and its treatment. Case Rep Oncol. 2011;4:229–35.CrossRefGoogle Scholar
  140. 140.
    Von Erlach T, Zwicker S, Pidhatika B, Konradi R, Textor M, Hall H, et al. Formation and characterization of DNA-polymer-condensates based on poly (2-methyl-2-oxazoline) grafted poly (L -lysine) for non-viral delivery of therapeutic DNA. Biomaterials. 2011;32(22):5291–303.CrossRefGoogle Scholar
  141. 141.
    Metselaar JM, Bruin P, De Boer LWT, De Vringer T, Snel C, Oussoren C, et al. A novel family of L -amino acid-based biodegradable polymer – lipid conjugates for the development of long-circulating liposomes with effective drug-targeting capacity. Bioconjug Chem. 2003;14:1156–64.PubMedCrossRefGoogle Scholar
  142. 142.
    Lammers T, Subr V, Ulbrich K, Peschke P, Huber PE, Hennink WE, et al. Simultaneous delivery of doxorubicin and gemcitabine to tumors in vivo using prototypic polymeric drug carriers. Biomaterials. 2009;30(20):3466–75.PubMedCrossRefGoogle Scholar
  143. 143.
    Sun J, Zeng F, Jian H, Wu S. Conjugation with betaine: a facile and effective approach to significant improvement of gene delivery properties of PEI. Biomacromolecules. 2013;14:728–36.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Siegers C, Biesalski M, Haag R. Self-assembled monolayers of dendritic polyglycerol derivatives on gold that resist the adsorption of proteins. Chem Eur J. 2004;10:2831–8.PubMedCrossRefGoogle Scholar
  145. 145.
    Alhareth K, Vauthier C, Bourasset F, Gueutin C, Ponchel G, Moussa F. Conformation of surface-decorating dextran chains affects the pharmacokinetics and biodistribution of doxorubicin-loaded nanoparticles. Eur J Pharm Biopharm. 2012;81(2):453–7.PubMedCrossRefGoogle Scholar
  146. 146.
    Vonarbourg A, Passirini C, Saulnier P, Simard P, Leroux JC, Benoit JP. Evaluation of pegylated lipid nanocapsules versus complement system activation and macrophage uptake. J Biomed Mater. 2006; 78(3):620–8.CrossRefGoogle Scholar
  147. 147.
    Yoo HS, Lee JE, Chung H, Kwon IC, Jeong SY. Self-assembled nanoparticles containing hydrophobically modified glycol chitosan for gene delivery. J Control Release. 2005;103:235–43.PubMedCrossRefGoogle Scholar
  148. 148.
    Guhagarkar SA, Majee SB, Samad A, Devarajan PV. Evaluation of pullulan-functionalized doxorubicin nanoparticles for asialoglycoprotein receptor-mediated uptake in Hep G2 cell line. Cancer Nanotechnol. 2011;2:49–55.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Guhagarkar SA, Gaikwad RV, Samad A, Malshe VC, Devarajan PV. Polyethylene sebacate – doxorubicin nanoparticles for hepatic targeting. Int J Pharm. 2010;401(1–2):113–22.PubMedCrossRefGoogle Scholar
  150. 150.
    Guhagarkar SA, Shah D, Patel MD, Sathaye SS, Devarajan PV. Polyethylene sebacate-silymarin nanoparticles with enhanced hepatoprotective activity. J Nanosci Nanotechnol. 2015;15:4090–3.PubMedCrossRefGoogle Scholar
  151. 151.
    Souza AAD, Devarajan PV. Bioenhanced oral curcumin nanoparticles: role of carbohydrates. Carbohydr Polym. 2016;136:1251–8.PubMedCrossRefGoogle Scholar
  152. 152.
    Pranatharthiharan S, Patel MD, Malshe VC, Padma V, Pranatharthiharan S, Patel MD, et al. Polyethylene sebacate doxorubicin nanoparticles: role of carbohydrate anchoring on in vitro and in vivo anticancer efficacy. Drug Deliv. 2016;7544:1–10.Google Scholar
  153. 153.
    Pranatharthiharan S, Patel MD, Malshe VC, Gorakshakar A, Madkaikar M, Ghosh K, et al. Asialoglycoprotein receptor targeted delivery of doxorubicin nanoparticles for hepatocellular carcinoma Asialoglycoprotein receptor targeted delivery of doxorubicin nanoparticles for hepatocellular carcinoma. Drug Deliv. 2017;7544:20–9.CrossRefGoogle Scholar
  154. 154.
    Doh K-O, Yeo Y. Application of polysaccharides for surface modification of nanomedicines. Ther Deliv. 2013;3(12):1447–56.CrossRefGoogle Scholar
  155. 155.
    Milosevits G, Krol S. Exosomes: potential model for complement- stealth delivery systems structure of exosomes. Eur J Nanomed. 2015;7(3):207–18.CrossRefGoogle Scholar
  156. 156.
    Fan W, Yan W, Xu Z, Ni H. Erythrocytes load of low molecular weight chitosan nanoparticles as a potential vascular drug delivery system. Colloids Surf B Biointerfaces. 2012;95:258–65.PubMedCrossRefGoogle Scholar
  157. 157.
    Li Y, Kroger M, Liu Kam W. Endocytosis of PEGylated nanoparticles accompanied by structural and free energy changes of the grafted polyethylene glycol. Biomaterials. 2014;35:8467–78.PubMedCrossRefGoogle Scholar
  158. 158.
    Jindal AB. The effect of particle shape on cellular interaction and drug delivery applications of micro- and nanoparticles. Int J Pharm. 2017;532(1):450–65.PubMedCrossRefGoogle Scholar
  159. 159.
    Dasgupta S, Auth T, Gompper G. Shape and orientation matter for the cellular uptake of nonspherical particles. Nano Lett. 2014;14:687–93.PubMedCrossRefGoogle Scholar
  160. 160.
    Agarwal R, Singh V, Jurney P, Shi L, Sreenivasan SV, Roy K. Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms. Proc Nat Acad Sci. 2013;110(43):1–6.CrossRefGoogle Scholar
  161. 161.
    Chithrani BD, Ghazani AA, Chan WCW. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006;6(4):662–8.PubMedCrossRefGoogle Scholar
  162. 162.
    Nowacek AS, Balkundi S, Mcmillan J, Roy U, Martinez-skinner A, Mosley RL, et al. Analyses of nanoformulated antiretroviral drug charge, size, shape and content for uptake, drug release and antiviral activities in human monocyte-derived macrophages. J Control Release. 2011;150(2):204–11.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Li Y, Chen X, Gu N. Computational investigation of interaction between nanoparticles and membranes: hydrophobic/hydrophilic effect. J Phys Chem B. 2008;112(51):16647–53.PubMedCrossRefGoogle Scholar
  164. 164.
    Moyano DF, Goldsmith M, Solfiell DJ, Landesman-milo D, Miranda OR, Peer D, et al. Nanoparticle hydrophobicity dictates immune response. J Am Chem Soc. 2012;134(9):3965–7.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Malcolm DW, Freeberg MAT, Wang Y, Sims KR Jr, Awad HA, DSW B. Diblock copolymer hydrophobicity facilitates efficient gene silencing and cytocompatible nanoparticle- mediated siRNA delivery to musculoskeletal cell types. Biomacromolecules. 2017;18(11):3753–65.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Voigt J, Christensen J, Shastri VP. Differential uptake of nanoparticles by endothelial cells through polyelectrolytes with affinity for caveolae. PNAS. 2014;111(8):2942–7.PubMedCrossRefGoogle Scholar
  167. 167.
    Verma A, Stellacci F. Effect of surface properties on nanoparticle – cell interactions. Small. 2010;1:12–21.CrossRefGoogle Scholar
  168. 168.
    He C, Hu Y, Yin L, Tang C, Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010;31(13):3657–66.PubMedCrossRefGoogle Scholar
  169. 169.
    Ricarda M, Holzapfel V, Musyanovych A, Nothelfer K, Walther P, Frank H, et al. Uptake of functionalized, fluorescent-labeled polymeric particles in different cell lines and stem cells. Biomaterials. 2006;27:2820–8.CrossRefGoogle Scholar
  170. 170.
    Clemens DL, Lee B, Xue M, Thomas CR, Meng H, Ferris D, et al. Targeted intracellular delivery of antituberculosis drugs to mycobacterium tuberculosis -infected macrophages via functionalized. 2012;2535–45.Google Scholar
  171. 171.
    Nam HY, Kwon SM, Chung H, Lee SY, Kwon SH, Jeon H, et al. Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles. J Control Release. 2009;135(3):259–67.PubMedCrossRefGoogle Scholar
  172. 172.
    Chung T, Wu S, Yao M, Lu C, Lin Y, Hung Y, et al. The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in 3T3-L1 cells and human mesenchymal stem cells. Biomaterials. 2007;28:2959–66.PubMedCrossRefGoogle Scholar
  173. 173.
    Deng L, Que F, Wei H, Xu G, Dong X, Zhang H. Solubilization of tea seed oil in a food-grade water-dilutable microemulsion. PLoS One. 2015;10(5):1–12.Google Scholar
  174. 174.
    Patil S, Sandberg A, Heckert E, Self W, Seal S. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials. 2007;28(31):4600–7.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Lourenc I, Mainardes RM, Palmira M, Gremia D. Zidovudine-loaded PLA and PLA – PEG blend nanoparticles: influence of polymer type on phagocytic uptake by polymorphonuclear cells. J Pharm Sci. 2009;98(1):257–67.CrossRefGoogle Scholar
  176. 176.
    Xiao K, Li Y, Luo J, Lee JS, Xiao W, Gonik AM, et al. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials. 2011;32(13):3435–46.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Beningo KA, Wang Y. Fc-receptor-mediated phagocytosis is regulated by mechanical properties of the target. J Cell Sci. 2002;115:849–56.PubMedGoogle Scholar
  178. 178.
    Guo P, Liu D, Subramanyam K, Wang B, Auguste DT, Moses MA. Nanoparticle elasticity directs tumor uptake. Nat Commun. 2018; 9:1–9.Google Scholar
  179. 179.
    Li S-D, Huang L. Nanoparticles evading the reticuloendothelial system: role of the supported bilayer. Biochim Biophys Acta. 2010;1788(10):2259–66.CrossRefGoogle Scholar
  180. 180.
    Na K, Lee TB, Park K, Shin E, Lee Y, Choi H. S elf-assembled nanoparticles of hydrophobically-modified polysaccharide bearing vitamin H as a targeted anti-cancer drug delivery system. Eur J Pharm Sci. 2003;18:165–73.PubMedCrossRefGoogle Scholar
  181. 181.
    Yuan H, Fales AM, Vo-dinh T. TAT peptide-functionalized gold nanostars: enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance. J Am Chem Soc. 2012;134:11358–61.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Edagwa BJ, Guo D, Puligujja P, Chen H, Mcmillan J, Liu X, et al. Long-acting antituberculous therapeutic nanoparticles target macrophage endosomes. FASEB J. 2014;28:1–12.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2019

Authors and Affiliations

  • Dhanashree H. Surve
    • 1
  • Prajakta Dandekar
    • 2
  • Padma V. Devarajan
    • 2
  • Anil B. Jindal
    • 1
    Email author
  1. 1.Department of PharmacyBirla Institute of Technology and Science, Pilani-campusPilani, JhunjhunuIndia
  2. 2.Department of Pharmaceutical SciencesInsitute of Chemical Technology, Deemed University, Elite Status and Centre of Excellence, Government of MaharashtraMumbaiIndia

Personalised recommendations