Advertisement

Overview of the HIV-Associated Tuberculosis Epidemic

  • Constance A. BensonEmail author
Chapter

Abstract

Globally, tuberculosis is the leading infectious cause of death and the most common opportunistic infection in people living with HIV (PLWH) (World Health Organization. Global Tuberculosis Report 2018). TB incidence has actually declined in the past 5 years both overall and for PLWH (World Health Organization. Global Tuberculosis Report 2018). However, efforts to achieve the target goals of the “End TB Strategy” both for people with and without HIV infection, will require more aggressive interventions aimed at each of the three pillars of TB control, including increased screening and diagnosis of TB infection and disease, rapid initiation of effective TB treatment, and more effective prevention of TB disease. The last decade has seen an explosion of new diagnostic technologies, development of new or novel antimycobacterial drugs, and the evolution of shorter course treatment for latent TB infection and drug resistant TB disease. While the next 5 years is likely to see a sea-change in our approaches to more effective treatment of TB, there are numerous barriers to the scale-up of new diagnostic tests and treatment regimens for PLWH that must be overcome to reach the rates of reduction in TB incidence that will be required to achieve the 2035 TB elimination goals.

Keywords

HIV TB Opportunistic infection TB diagnosis TB treatment TB prevention TB elimination 

References

  1. 1.
    World Health Organization. Global Tuberculosis Report 2018Google Scholar
  2. 2.
    Houben RM, Dodd PJ (2016) The global burden of latent tuberculosis infection: a re-estimation using mathematical modeling. PLoS Med 13:e1002152CrossRefGoogle Scholar
  3. 3.
    United Nations General Assembly. Political declaration of the UN General Assembly high-level meeting on the fight against tuberculosis. www.un.org/pga/73/event/fight-to-end-tuberculosis/
  4. 4.
    Tornheim JA, Dooley KE (2019) The global landscape of tuberculosis therapeutics. Ann Rev Med 70:105–120CrossRefGoogle Scholar
  5. 5.
    Boehme CC, Nabeta P, Hillemann D (2010) Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med 363:1005–1015CrossRefGoogle Scholar
  6. 6.
    Dorman SE, Schumacher SG, Alland D, Nabeta P, Armstrong DT, King B et al (2018) Xpert MTB/RIF Ultra for detection of Mycobacterium tuberculosis and rifampicin resistance: a prospective multicentre diagnostic accuracy study. Lancet Infect Dis 18:76–84CrossRefGoogle Scholar
  7. 7.
    Peter JG, Zijenah LS, Chanda D, Clowes P, Lesosky M, Gina P (2016) Effect on mortality of point-of-care, urine-based lipoarabinomannan testing to guide tuberculosis treatment initiation in HIV-positive hospital inpatients: a pragmatic, parallel-group, multicountry, open-label, randomized controlled trial. Lancet 387:1187–1197CrossRefGoogle Scholar
  8. 8.
    Maningi NE, Malinga LA, Antiabong JF, Lekalakala RM, Mbelle NM (2017) Comparison of line probe assay to BACTEC MGIT 960 system for susceptibility testing of first and second-line anti-tuberculosis drugs in a referral laboratory in South Africa. BMC Infect Dis 17:795. (1–8)CrossRefGoogle Scholar
  9. 9.
    Gygli SM, Keller PM, Ballif M, Blochliger N, Homke R, Reinhard M et al (2019) Whole-genome sequencing for drug resistance profile prediction in Mycobacterium tuberculosis. Antimicrob Agents Chemother 63:e02175–e02118CrossRefGoogle Scholar
  10. 10.
    Jindani A, Harrison TS, Nunn AJ, Phillips PP, Churchyard GJ, Charalambous S et al (2014) N Engl J Med 371:1599–1608CrossRefGoogle Scholar
  11. 11.
    Merle CS, Fielding K, Sow OB, Gninafon M, Lo MB, Mthiyane T et al (2014) A four-month gatifloxacin-containing regimen for treating tuberculosis. N Engl J Med 371:1588–1598CrossRefGoogle Scholar
  12. 12.
    Gillespie SH, Grook AM, McHugh TD, Mendel CM, Meredith SK, Murray SK et al (2014) N Engl J Med 371:1577–1587CrossRefGoogle Scholar
  13. 13.
    Aung KJ, Van Deun A, Declercq E, Sarker MR, Das PK, Hossain MA, Rieder HL (2014) Successful ‘9-month Bangladesh regimen’ for multidrug-resistant tuberculosis among consecutive patients. Int J Tuberc Lung Dis 18:1180–1187CrossRefGoogle Scholar
  14. 14.
    World Health Organization. WHO treatment guidelines for drug-resistant tuberculosis. 2016 UpdateGoogle Scholar
  15. 15.
    Diacon AH, Pym A, Grobusch MP et al (2014) Multidrug-resistant tuberculosis and culture conversion with bedaquiline. NEJM 371:723–732CrossRefGoogle Scholar
  16. 16.
    Pym AS, Diacon AH, Tang S-J et al (2016) Bedaquiline in the treatment of multidrug- and extensively drug-resistant tuberculosis. Eur Respir J 47:564–574CrossRefGoogle Scholar
  17. 17.
    Gler MT, Skripconoka V, Sanchez-Garavito E et al (2012) Delamanid for multidrug-resistant pulmonary tuberculosis. NEJM 366:2151–2160CrossRefGoogle Scholar
  18. 18.
    Skripconoka V, Danilovits M, Pehme L et al (2013) Delamanid improves outcomes and reduces mortality in multidrug-resistant tuberculosis. Eur Respir J 41:1393–1400CrossRefGoogle Scholar
  19. 19.
    World Health Organization (2018) WHO treatment guidelines for multi-drug and rifampicin-resistant tuberculosis (MDR/RR-TB), 2018. World Health Organization, Geneva. (https://www.who.int/tb/publications/2018/WHO.2018.MDR-TB.Rx.Guidelines.prefinal.text.pdf)Google Scholar
  20. 20.
    Nunn AJ, Phillips PPJ, Meredith SK, Chiang CY, Conradie F, Dalai D et al (2019) A trial of a shorter regimen for rifampin-resistant tuberculosis. N Engl J Med 380:1201–1213CrossRefGoogle Scholar
  21. 21.
    Conradie F, et al. 49th International Union World Conference on Lung Disease, 2018Google Scholar
  22. 22.
  23. 23.
    Sterling TR, Villarino ME, Borisov AS et al (2011) Three months of rifapentine and isoniazid for latent tuberculosis infection. N Engl J Med 365:2155–2166CrossRefGoogle Scholar
  24. 24.
    Sterling TR, Scott NA, Miro JM et al (2016) Three months of weekly rifapentine plus isoniazid for treatment of M. tuberculosis infection in HIV co-infected persons. AIDS 30:1607–1615CrossRefGoogle Scholar
  25. 25.
    Menzies D, Adjobimey M, Ruslami R et al (2018) Four months of rifampin or nine months of isoniazid for latent tuberculosis in adults. N Engl J Med 379:440–453CrossRefGoogle Scholar
  26. 26.
    Swindells S, Ramchandani R, Gupta A et al (2019) One month of rifapentine plus isoniazid to prevent HIV-related tuberculosis. N Engl J Med 380:1001–1011CrossRefGoogle Scholar
  27. 27.
    Van Der Meeren O, Hatherill M, Nduba V, Wilkinson RJ, Muyoyeta M, Van Brakel E et al (2018) Phase 2b controlled trial of M72/AS01E vaccine to prevent tuberculosis. N Engl J Med 379:1621–1634CrossRefGoogle Scholar
  28. 28.
    Diel R, Loddenkemper R, Nienhaus A (2012) Predictive value of interferon-y release assays and tuberculin skin testing for progression from latent TB infection to disease state: a meta-analysis. Chest 142:63–75CrossRefGoogle Scholar
  29. 29.
    Suliman S, Thompson E, Sutherland J, Weiner Rd J, Ota MOC, Shankar S et al (2018) Four-gene pan-African blood signature predicts progression to tuberculosis. Am J Resp Crit Care Med.  https://doi.org/10.1164/rccm.201711-2340OC. [Epub ahead of print]CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division of Infectious Diseases and Global Public HealthUniversity of California San DiegoSan DiegoUSA

Personalised recommendations