Biofunctional Nanoparticles for Protein Separation, Purification and Detection

  • Jaison Jeevanandam
  • Prabir Kumar Kulabhusan
  • Michael K. DanquahEmail author


Proteins are bio-macromolecules of long amino acid chains with several significant applications in living cells. It is the building block of tissues, enzymes, hormones, bones, muscles, cartilage, blood, skin and biological fluids. Proteins in biological fluids exist in combination with cells, DNA, RNA and other proteins. This requires effective separation and purification mechanisms to detect, isolate and characterize specific proteins from biological fluids. Numerous conventional methods are available for separation, purification and detection of proteins. However, these methods are challenged with several drawbacks including low separation efficiency, low purity levels, use of complex separation and purification processes, requirement of stringent purification steps, and lower detection sensitivity in complex biofluids. Application of nanoparticles presents a strategy to address the challenges associated with protein separation, purification and detection. This is due to the unique properties of nanoparticles including enhanced surface area to volume ratio, presence of atoms at the edges of surface, enhanced bioactivity and sensitivity. This chapter presents an overview of different types of nanoparticles used for protein separation, purification and detection applications. In addition, accounts on industrial applications of nanoparticles for protein bioseparation and future reflections are discussed.


Nanoparticles Protein separation Immobilization Purification Detection 


  1. Abbasi, E., Aval, S. F., Akbarzadeh, A., Milani, M., Nasrabadi, H. T., Joo, S. W., et al. (2014). Dendrimers: Synthesis, applications, and properties. Nanoscale Research Letters, 9(1), 247.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Afsharan, H., Navaeipour, F., Khalilzadeh, B., Tajalli, H., Mollabashi, M., Ahar, M. J., et al. (2016). Highly sensitive electrochemiluminescence detection of p53 protein using functionalized Ru–silica nanoporous@gold nanocomposite. Biosensors & Bioelectronics, 80, 146–153.CrossRefGoogle Scholar
  3. Agoston, R., Izake, E. L., Sivanesan, A., Lott, W. B., Sillence, M. & Steel, R. (2016). Rapid isolation and detection of erythropoietin in blood plasma by magnetic core gold nanoparticles and portable Raman spectroscopy. Nanomedicine: Nanotechnology, Biology and Medicine, 12 (3), 633–641.Google Scholar
  4. Ali, A., Zafar, H., Zia, M., Ul Haq, I., Phull, A. R., Ali, J. S., et al. (2016). Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl, 9, 49–67.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Ament, I., Prasad, J., Henkel, A., Schmachtel, S., & Sönnichsen, C. (2012). Single Unlabeled Protein Detection on Individual Plasmonic Nanoparticles. Nano Letters, 12(2), 1092–1095.CrossRefGoogle Scholar
  6. An, Y., Jiang, X., Bi, W., Chen, H., Jin, L., Zhang, S., et al. (2012). Sensitive electrochemical immunosensor for α-synuclein based on dual signal amplification using PAMAM dendrimer-encapsulated Au and enhanced gold nanoparticle labels. Biosensors & Bioelectronics, 32(1), 224–230.CrossRefGoogle Scholar
  7. An, Y., Tang, L., Jiang, X., Chen, H., Yang, M., Jin, L., Zhang, S., Wang, C., & Zhang, W. (2010). A Photoelectrochemical Immunosensor Based on Au‐Doped TiO2 Nanotube Arrays for the Detection of α‐Synuclein. Chemistry—A European Journal, 16 (48), 14439–14446.Google Scholar
  8. Araújo, J. E., Lodeiro, C., Capelo, J. L., Rodríguez-González, B., dos Santos, A. A., Santos, H. M., et al. (2015). Novel nanocomposites based on a strawberry-like gold- coated magnetite (Fe@Au) for protein separation in multiple myeloma serum samples. Nano Research, 8(4), 1189–1198.CrossRefGoogle Scholar
  9. Atacan, K., Çakıroğlu, B., & Özacar, M. (2016). Improvement of the stability and activity of immobilized trypsin on modified Fe3O4 magnetic nanoparticles for hydrolysis of bovine serum albumin and its application in the bovine milk. Food Chemistry, 212, 460–468.CrossRefGoogle Scholar
  10. Babu, P. J., Raichur, A. M., & Doble, M. (2018). Synthesis and characterization of biocompatible carbon-gold (C–Au) nanocomposites and their biomedical applications as an optical sensor for creatinine detection and cellular imaging. Sensors and Actuators B: Chemical, 258, 1267–1278.CrossRefGoogle Scholar
  11. Bao, J., Chen, W., Liu, T., Zhu, Y., Jin, P., Wang, L., et al. (2007). Bifunctional Au-Fe3O4 nanoparticles for protein separation. ACS Nano, 1(4), 293–298.CrossRefGoogle Scholar
  12. Bergeron-Sandoval, L.-P., Heris, H. K., Chang, C., Cornell, C. E., Keller, S. L., Hendricks, A. G., Ehrlicher, A. J., Francois, P., Pappu, R. V. & Michnick, S. W. (2018). Endocytosis caused by liquid-liquid phase separation of proteins. bioRxiv, 145664.Google Scholar
  13. Bergveld, P. (1991). A critical evaluation of direct electrical protein detection methods. Biosensors & Bioelectronics, 6(1), 55–72.CrossRefGoogle Scholar
  14. Bonanni, A., Pividori, M. I., Campoy, S., Barbé, J., & Del Valle, M. (2009). Impedimetric detection of double-tagged PCR products using novel amplification procedures based on gold nanoparticles and Protein G. Analyst, 134(3), 602–608.CrossRefGoogle Scholar
  15. Brince Paul, K., Kumar, S., Tripathy, S., Vanjari, S. R. K., Singh, V., & Singh, S. G. (2016). A highly sensitive self assembled monolayer modified copper doped zinc oxide nanofiber interface for detection of Plasmodium falciparum histidine-rich protein-2: Targeted towards rapid, early diagnosis of malaria. Biosensors & Bioelectronics, 80, 39–46.CrossRefGoogle Scholar
  16. Cao, M., Li, Z., Wang, J., Ge, W., Yue, T., Li, R., et al. (2012). Food related applications of magnetic iron oxide nanoparticles: Enzyme immobilization, protein purification, and food analysis. Trends in Food Science & Technology, 27(1), 47–56.CrossRefGoogle Scholar
  17. Cao, R., Bhattacharya, D., Adhikari, B., Li, J., & Cheng, J. (2015). Large-scale model quality assessment for improving protein tertiary structure prediction. Bioinformatics, 31(12), i116–i123.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Cardoso, A. M., de Oliveira, E. G., Coradini, K., Bruinsmann, F. A., Aguirre, T., Lorenzoni, R., et al. (2019). Chitosan hydrogels containing nanoencapsulated phenytoin for cutaneous use: Skin permeation/penetration and efficacy in wound healing. Materials Science and Engineering C, 96, 205–217.CrossRefGoogle Scholar
  19. Carneiro, L., & Ward, R. J. (2018). Functionalization of paramagnetic nanoparticles for protein immobilization and purification. Analytical Biochemistry, 540–541, 45–51.CrossRefGoogle Scholar
  20. Castillo, G., Spinella, K., Poturnayová, A., Šnejdárková, M., Mosiello, L., & Hianik, T. (2015). Detection of aflatoxin B1 by aptamer-based biosensor using PAMAM dendrimers as immobilization platform. Food Control, 52, 9–18.CrossRefGoogle Scholar
  21. Caucheteur, C., Guo, T., & Albert, J. (2015). Review of plasmonic fiber optic biochemical sensors: Improving the limit of detection. Analytical and Bioanalytical Chemistry, 407(14), 3883–3897.CrossRefGoogle Scholar
  22. Chandra, H., Reddy, P. J., & Srivastava, S. (2011). Protein microarrays and novel detection platforms. Expert Review of Proteomics, 8(1), 61–79.CrossRefGoogle Scholar
  23. Chang, C.-C., Chen, C.-Y., Chuang, T.-L., Wu, T.-H., Wei, S.-C., Liao, H., et al. (2016). Aptamer-based colorimetric detection of proteins using a branched DNA cascade amplification strategy and unmodified gold nanoparticles. Biosensors & Bioelectronics, 78, 200–205.CrossRefGoogle Scholar
  24. Chang, Y. K., & Chase, H. A. (1996). Development of operating conditions for protein purification using expanded bed techniques: The effect of the degree of bed expansion on adsorption performance. Biotechnology and Bioengineering, 49(5), 512–526.CrossRefGoogle Scholar
  25. Chatterjee, K., Sarkar, S., Jagajjanani Rao, K., & Paria, S. (2014). Core/shell nanoparticles in biomedical applications. Advances in Colloid and Interface Science, 209, 8–39.CrossRefGoogle Scholar
  26. Chauhan, N., Sharma, S., & Hooda, V. (2018). Improved protein determination assays obtained after substitution of copper sulfate by copper oxide nanoparticles. Analytical Biochemistry, 547, 19–25.CrossRefGoogle Scholar
  27. Chen, B., Zhao, H., Chen, S., Long, F., Huang, B., Yang, B., et al. (2019). A magnetically recyclable chitosan composite adsorbent functionalized with EDTA for simultaneous capture of anionic dye and heavy metals in complex wastewater. Chemical Engineering Journal, 356, 69–80.CrossRefGoogle Scholar
  28. Chen, F., Zhao, W., Zhang, J., & Kong, J. (2016). Magnetic two-dimensional molecularly imprinted materials for the recognition and separation of proteins. Physical Chemistry Chemical Physics, 18(2), 718–725.CrossRefGoogle Scholar
  29. Chen, J., Huang, Z., Meng, H., Zhang, L., Ji, D., Liu, J., et al. (2018a). A facile fluorescence lateral flow biosensor for glutathione detection based on quantum dots-MnO2 nanocomposites. Sensors and Actuators B: Chemical, 260, 770–777.CrossRefGoogle Scholar
  30. Chen, S., Liu, P., Su, K., Li, X., Qin, Z., Xu, W., et al. (2018b). Electrochemical aptasensor for thrombin using co-catalysis of hemin/G-quadruplex DNAzyme and octahedral Cu2O–Au nanocomposites for signal amplification. Biosensors & Bioelectronics, 99, 338–345.CrossRefGoogle Scholar
  31. Chinen, A. B., Guan, C. M., Ferrer, J. R., Barnaby, S. N., Merkel, T. J., & Mirkin, C. A. (2015). Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chemical Reviews, 115(19), 10530–10574.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Choi, J. H., Kim, H. S., Choi, J.-W., Hong, J. W., Kim, Y.-K., & Oh, B.-K. (2013). A novel Au-nanoparticle biosensor for the rapid and simple detection of PSA using a sequence-specific peptide cleavage reaction. Biosensors & Bioelectronics, 49, 415–419.CrossRefGoogle Scholar
  33. Cole, J. P., Lessard, J. J., Rodriguez, K. J., Hanlon, A. M., Reville, E. K., Mancinelli, J. P., et al. (2017). Single-chain nanoparticles containing sequence-defined segments: using primary structure control to promote secondary and tertiary structures in synthetic protein mimics. Polymer Chemistry, 8(38), 5829–5835.CrossRefGoogle Scholar
  34. Connor, D. M. & Broome, A.-M. (2018) Chapter Seven - Gold Nanoparticles for the Delivery of Cancer Therapeutics, in Broome, A.-M. (ed), Advances in Cancer ResearchAcademic Press, 163–184.Google Scholar
  35. Cotin, G., Piant, S., Mertz, D., Felder-Flesch, D., & Begin-Colin, S. (2018) Chapter 2 - Iron Oxide Nanoparticles for Biomedical Applications: Synthesis, Functionalization, and Application, in Mahmoudi, M. & Laurent, S. (eds), Iron Oxide Nanoparticles for Biomedical ApplicationsElsevier, 43–88.Google Scholar
  36. Dadras, A., Naimi-Jamal, M. R., Moghaddam, F. M., & Ayati, S. E. (2018). Suzuki-Miyaura coupling reaction in water in the presence of robust palladium immobilized on modified magnetic Fe3O4 nanoparticles as a recoverable catalyst. Applied Organometallic Chemistry, 32(2), e3993.CrossRefGoogle Scholar
  37. Dai, G., Zhong, J., Song, L., Guo, C., Gan, N., & Wu, Z. (2015). Harmful algal bloom removal and eutrophic water remediation by commercial nontoxic polyamine-co-polymeric ferric sulfate-modified soils. Environmental Science and Pollution Research, 22(14), 10636–10646.CrossRefGoogle Scholar
  38. Daloglu, M. U., Ray, A., Gorocs, Z., Xiong, M., Malik, R., Bitan, G., McLeod, E. & Ozcan, A. On-chip ultraviolet holography for high-throughput nanoparticle and biomolecule detection 2018. International Society for Optics and Photonics.Google Scholar
  39. De, M., Rana, S., Akpinar, H., Miranda, O. R., Arvizo, R. R., Bunz, U. H. F., et al. (2009). Sensing of proteins in human serum using conjugates of nanoparticles and green fluorescent protein. Nature Chemistry, 1, 461.CrossRefPubMedPubMedCentralGoogle Scholar
  40. De Silva, R. T., Mantilaka, M., Ratnayake, S. P., Amaratunga, G. A. J., & de Silva, K. M. N. (2017). Nano-MgO reinforced chitosan nanocomposites for high performance packaging applications with improved mechanical, thermal and barrier properties. Carbohydrate Polymers, 157, 739–747.CrossRefGoogle Scholar
  41. Delaforge, E., Cordeiro, T. N., Bernadó, P. & Sibille, N. (2017). Conformational Characterization of Intrinsically Disordered Proteins and Its Biological Significance. Modern Magnetic Resonance, 1–20.Google Scholar
  42. Deraedt, C., Melaet, G. r. m., Ralston, W. T., Ye, R., & Somorjai, G. A. (2017a). Platinum and other transition metal nanoclusters (Pd, Rh) stabilized by PAMAM dendrimer as excellent heterogeneous catalysts: application to the methylcyclopentane (MCP) hydrogenative isomerization. Nano letters, 17 (3), 1853–1862.Google Scholar
  43. Deraedt, C., Ye, R., Ralston, W. T., Toste, F. D., & Somorjai, G. A. (2017b). Dendrimer-Stabilized Metal Nanoparticles as Efficient Catalysts for Reversible Dehydrogenation/Hydrogenation of N-Heterocycles. Journal of the American Chemical Society, 139(49), 18084–18092.CrossRefGoogle Scholar
  44. Derkus, B., Emregul, E., Emregul, K. C., & Yucesan, C. (2014). Alginate and alginate-titanium dioxide nanocomposite as electrode materials for anti-myelin basic protein immunosensing. Sensors and Actuators B: Chemical, 192, 294–302.CrossRefGoogle Scholar
  45. Dhall, A., & Self, W. (2018). Cerium Oxide Nanoparticles: A Brief Review of Their Synthesis Methods and Biomedical Applications. Antioxidants (Basel, Switzerland), 7(8), 97.Google Scholar
  46. Diamente, P. R., Burke, R. D., & van Veggel, F. C. J. M. (2006). Bioconjugation of Ln3+-doped LaF3 nanoparticles to avidin. Langmuir, 22(4), 1782–1788.CrossRefGoogle Scholar
  47. Diaz, C., Guzmán, J., Jiménez, V. A., & Alderete, J. B. (2018). Partially PEGylated PAMAM dendrimers as solubility enhancers of Silybin. Pharmaceutical Development and Technology, 23(7), 689–696.CrossRefGoogle Scholar
  48. Duceppe, N., & Tabrizian, M. (2010). Advances in using chitosan-based nanoparticles for in vitro and in vivo drug and gene delivery. Expert opinion on drug delivery, 7(10), 1191–1207.CrossRefGoogle Scholar
  49. Elbeshehy, E. K. F., Elazzazy, A. M., & Aggelis, G. (2015). Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens. Frontiers in Microbiology, 6, 453.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Elsabahy, M., & Wooley, K. L. (2012). Design of polymeric nanoparticles for biomedical delivery applications. Chemical Society Reviews, 41(7), 2545–2561.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Fang, Y., Hu, Q., Yu, X., & Wang, L. (2018). Ultrasensitive electrochemical immunosensor for procalcitonin with signal enhancement based on zinc nanoparticles functionalized ordered mesoporous carbon–silica nanocomposites. Sensors and Actuators B: Chemical, 258, 238–245.CrossRefGoogle Scholar
  52. Farzi-Khajeh, H., Jafari, B., Safa, K. D., & Dastmalchi, S. (2019). Magnetic iron oxide nanoparticles modified with vanadate and phosphate salts for purification of alkaline phosphatase from the bovine skim milk. Colloids and Surfaces B: Biointerfaces, 175, 644–653.CrossRefGoogle Scholar
  53. Feng, X., Deng, C., Gao, M., & Zhang, X. (2018). Facile and easily popularized synthesis of L-cysteine-functionalized magnetic nanoparticles based on one-step functionalization for highly efficient enrichment of glycopeptides. Analytical and Bioanalytical Chemistry, 410(3), 989–998.CrossRefGoogle Scholar
  54. Fortunati, E., Rescignano, N., Botticella, E., La Fiandra, D., Renzi, M., Mazzaglia, A., Torre, L., Kenny, J. M. & Balestra, G. M. (2016) Effect of poly (DL-lactide-co-glycolide) nanoparticles or cellulose nanocrystals-based formulations on Pseudomonas syringae pv. tomato (Pst) and tomato plant development. Journal of Plant Diseases and Protection, 123 (6), 301–310.Google Scholar
  55. Fraga García, P., Brammen, M., Wolf, M., Reinlein, S., Freiherr von Roman, M., & Berensmeier, S. (2015). High-gradient magnetic separation for technical scale protein recovery using low cost magnetic nanoparticles. Separation and Purification Technology, 150, 29–36.CrossRefGoogle Scholar
  56. Franzreb, M., Siemann-Herzberg, M., Hobley, T. J., & Thomas, O. R. (2006). Protein purification using magnetic adsorbent particles. Applied Microbiology and Biotechnology, 70(5), 505–516.CrossRefGoogle Scholar
  57. Gamal-Eldeen, A. M., Abdel-Hameed, S. A. M., El-Daly, S. M., Abo-Zeid, M. A. M., & Swellam, M. M. (2017). Cytotoxic effect of ferrimagnetic glass-ceramic nanocomposites on bone osteosarcoma cells. Biomedicine & Pharmacotherapy, 88, 689–697.CrossRefGoogle Scholar
  58. Gao, F., Du, L., Zhang, Y., Zhou, F., & Tang, D. (2016). A sensitive sandwich-type electrochemical aptasensor for thrombin detection based on platinum nanoparticles decorated carbon nanocages as signal labels. Biosensors & Bioelectronics, 86, 185–193.CrossRefGoogle Scholar
  59. Gau, J., Jr., Lan, E. H., Dunn, B., Ho, C.-M. & Woo, J. C. S. (2001) A MEMS based amperometric detector for E. coli bacteria using self-assembled monolayers. Biosensors and Bioelectronics, 16 (9–12), 745–755.Google Scholar
  60. Gawande, M. B., Goswami, A., Asefa, T., Guo, H., Biradar, A. V., Peng, D.-L., et al. (2015). Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chemical Society Reviews, 44(21), 7540–7590.CrossRefGoogle Scholar
  61. Gong, Z.-S., Duan, L.-P., & Tang, A.-N. (2015). Amino-functionalized silica nanoparticles for improved enantiomeric separation in capillary electrophoresis using carboxymethyl-β-cyclodextrin (CM-β-CD) as a chiral selector. Microchimica Acta, 182(7), 1297–1304.CrossRefGoogle Scholar
  62. Greaser, M. L. & Warren, C. M. (2019) Electrophoretic Separation of Very Large Molecular Weight Proteins in SDS Agarose, Electrophoretic Separation of ProteinsSpringer, 203–210.Google Scholar
  63. Guihen, E. (2013). Nanoparticles in modern separation science. TrAC Trends in Analytical Chemistry, 46, 1–14.CrossRefGoogle Scholar
  64. Guo, H., Li, M., Tu, S., & Sun, H. (2018). Selective binding and magnetic separation of His-tagged proteins using Fe3O4/PAM/NTA-Ni2+ Magnetic Nanoparticles. IOP Conference Series: Materials Science and Engineering, 322, 022017.CrossRefGoogle Scholar
  65. Hamed, I., Özogul, F., & Regenstein, J. M. (2016). Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends in Food Science & Technology, 48, 40–50.CrossRefGoogle Scholar
  66. Hamelian, M., Zangeneh, M. M., Amisama, A., Varmira, K., & Veisi, H. (2018). Green synthesis of silver nanoparticles using Thymus kotschyanus extract and evaluation of their antioxidant, antibacterial and cytotoxic effects. Applied Organometallic Chemistry, 32(9), e4458.CrossRefGoogle Scholar
  67. Hastings, J. F., Han, J. Z. R., Shearer, R. F., Kennedy, S. P., Iconomou, M., Saunders, D. N. & Croucher, D. R. (2018) Dissecting Multi-protein Signaling Complexes by Bimolecular Complementation Affinity Purification (BiCAP). JoVE (Journal of Visualized Experiments) (136), e57109.Google Scholar
  68. He, L., Zhang, S., Ji, H., Wang, M., Peng, D., Yan, F., et al. (2016). Protein-templated cobaltous phosphate nanocomposites for the highly sensitive and selective detection of platelet-derived growth factor-BB. Biosensors & Bioelectronics, 79, 553–560.CrossRefGoogle Scholar
  69. Heemskerk, A. A. M., Deelder, A. M., & Mayboroda, O. A. (2016). CE–ESI–MS for bottom-up proteomics: Advances in separation, interfacing and applications. Mass Spectrometry Reviews, 35(2), 259–271.CrossRefGoogle Scholar
  70. Heydari-Bafrooei, E., Amini, M., & Ardakani, M. H. (2016). An electrochemical aptasensor based on TiO2/MWCNT and a novel synthesized Schiff base nanocomposite for the ultrasensitive detection of thrombin. Biosensors & Bioelectronics, 85, 828–836.CrossRefGoogle Scholar
  71. Huang, J.-Y., Lin, H.-T., Chen, T.-H., Chen, C.-A., Chang, H.-T., & Chen, C.-F. (2018). Signal amplified gold nanoparticles for cancer diagnosis on paper-based analytical devices. ACS Sensors, 3(1), 174–182.CrossRefGoogle Scholar
  72. Huang, X., Aguilar, Z. P., Xu, H., Lai, W., & Xiong, Y. (2016). Membrane-based lateral flow immunochromatographic strip with nanoparticles as reporters for detection: a review. Biosensors & Bioelectronics, 75, 166–180.CrossRefGoogle Scholar
  73. Ishak, N. F., Hashim, N. A., Othman, M. H. D., Monash, P., & Zuki, F. M. (2017). Recent progress in the hydrophilic modification of alumina membranes for protein separation and purification. Ceramics International, 43(1), 915–925.CrossRefGoogle Scholar
  74. Iwasaki, S., Kawasaki, H. & Iwasaki, Y. (2018). Label-Free Specific Detection and Collection of C-Reactive Protein Using Zwitterionic Phosphorylcholine-Polymer-Protected Magnetic Nanoparticles. Langmuir.Google Scholar
  75. Janson, J.-C. (2012) Protein purification: principles, high resolution methods, and applications, 151John Wiley & Sons.Google Scholar
  76. Jeevanandam, J., Aing, Y. S., Chan, Y. S., Pan, S. & Danquah, M. K. (2017) Nanoformulation and Application of Phytochemicals as Antimicrobial Agents, Antimicrobial NanoarchitectonicsElsevier, 61–82.Google Scholar
  77. Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A., & Danquah, M. K. (2018). Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein journal of nanotechnology, 9(1), 1050–1074.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Jeevanandam, J., Pal, K., & Danquah, M. K. (2019). Virus-like nanoparticles as a novel delivery tool in gene therapy. Biochimie, 157, 38–47.CrossRefGoogle Scholar
  79. Jeevanandam, J., Chan, Y. S., & Danquah, M. K. (2016a). Biosynthesis of Metal and Metal Oxide Nanoparticles. ChemBioEng Reviews, 3(2), 55–67.CrossRefGoogle Scholar
  80. Jeevanandam, J., San Chan, Y., & Danquah, M. K. (2016b). Nano-formulations of drugs: Recent developments, impact and challenges. Biochimie, 128, 99–112.CrossRefGoogle Scholar
  81. Jeon, S., Subbiah, R., Bonaedy, T., Van, S., Park, K., & Yun, K. (2018). Surface functionalized magnetic nanoparticles shift cell behavior with on/off magnetic fields. Journal of Cellular Physiology, 233(2), 1168–1178.CrossRefGoogle Scholar
  82. Jeong, B., Akter, R., Han, O. H., Rhee, C. K., & Rahman, M. A. (2013). Increased Electrocatalyzed Performance through Dendrimer-Encapsulated Gold Nanoparticles and Carbon Nanotube-Assisted Multiple Bienzymatic Labels: Highly Sensitive Electrochemical Immunosensor for Protein Detection. Analytical Chemistry, 85(3), 1784–1791.CrossRefGoogle Scholar
  83. Jia, G., Cao, Z., Xue, H., Xu, Y., & Jiang, S. (2009). Novel zwitterionic-polymer-coated silica nanoparticles. Langmuir, 25(5), 3196–3199.CrossRefGoogle Scholar
  84. Jia, Y., Zuo, X., Lou, X., Miao, M., Cheng, Y., Min, X., et al. (2015). Rational Designed Bipolar, Conjugated Polymer-DNA Composite Beacon for the Sensitive Detection of Proteins and Ions. Analytical Chemistry, 87(7), 3890–3894.CrossRefGoogle Scholar
  85. Jin, J., Liu, T., Li, M., Yuan, C., Liu, Y., Tang, J., et al. (2018). Rapid in situ biosynthesis of gold nanoparticles in living platelets for multimodal biomedical imaging. Colloids and Surfaces B: Biointerfaces, 163, 385–393.CrossRefGoogle Scholar
  86. Joo, J., Kwon, D., Yim, C., & Jeon, S. (2012). Highly Sensitive Diagnostic Assay for the Detection of Protein Biomarkers Using Microresonators and Multifunctional Nanoparticles. ACS Nano, 6(5), 4375–4381.CrossRefGoogle Scholar
  87. Junior, C. R. F., de Moura, M. R., & Aouada, F. A. (2017). Synthesis and characterization of intercalated nanocomposites based on poly (methacrylic acid) hydrogel and nanoclay cloisite-Na+ for possible application in agriculture. Journal of Nanoscience and Nanotechnology, 17(8), 5878–5883.CrossRefGoogle Scholar
  88. Kathiraven, T., Sundaramanickam, A., Shanmugam, N., & Balasubramanian, T. (2015). Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens. Applied Nanoscience, 5(4), 499–504.CrossRefGoogle Scholar
  89. Khampieng, T., Wongkittithavorn, S., Chaiarwut, S., Ekabutr, P., Pavasant, P., & Supaphol, P. (2018). Silver nanoparticles-based hydrogel: Characterization of material parameters for pressure ulcer dressing applications. Journal of Drug Delivery Science and Technology, 44, 91–100.CrossRefGoogle Scholar
  90. Kim, D., Daniel, W. L., & Mirkin, C. A. (2009). Microarray-based multiplexed scanometric immunoassay for protein cancer markers using gold nanoparticle probes. Analytical Chemistry, 81(21), 9183–9187.CrossRefPubMedPubMedCentralGoogle Scholar
  91. Kim, H., Griffith, T. & Panyam, J. (2019). poly (D, L-lactide-co-glycolide) nanoparticles as a vaccine delivery platform for TLR7/8 agonist-based cancer vaccine. The Journal of pharmacology and experimental therapeutics.Google Scholar
  92. Ko, J., Carpenter, E., & Issadore, D. (2016). Detection and isolation of circulating exosomes and microvesicles for cancer monitoring and diagnostics using micro-/nano-based devices. Analyst, 141(2), 450–460.CrossRefPubMedPubMedCentralGoogle Scholar
  93. Koch, C., Wabbel, K., Eber, F. J., Krolla-Sidenstein, P., Azucena, C., Gliemann, H., Eiben, S., Geiger, F. & Wege, C. (2015). Modified TMV Particles as Beneficial Scaffolds to Present Sensor Enzymes. Frontiers in Plant Science, 6 (1137).Google Scholar
  94. Kulabhusan, P. K., Rajwade, J. M., Sugumar, V., Taju, G., Hameed, A. S. S., & Paknikar, K. M. (2017). Field-Usable lateral flow immunoassay for the rapid detection of white spot syndrome virus (WSSV). PLoS ONE, 12(1), e0169012.CrossRefPubMedPubMedCentralGoogle Scholar
  95. Kumar, D., Kumar, G. & Agrawal, V. (2018) Green synthesis of silver nanoparticles using Holarrhena antidysenterica (L.) Wall.bark extract and their larvicidal activity against dengue and filariasis vectors. Parasitol Res, 117 (2), 377–389.Google Scholar
  96. Lee, I. S., Lee, N., Park, J., Kim, B. H., Yi, Y.-W., Kim, T., et al. (2006). Ni/NiO Core/Shell nanoparticles for selective binding and magnetic separation of histidine-tagged proteins. Journal of the American Chemical Society, 128(33), 10658–10659.CrossRefGoogle Scholar
  97. Lee, J., Hernandez, P., Lee, J., Govorov, A. O., & Kotov, N. A. (2007). Exciton–plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection. Nature Materials, 6(4), 291.CrossRefGoogle Scholar
  98. Lee, J. H., Yoon, K. H., Hwang, K. S., Park, J., Ahn, S., & Kim, T. S. (2004). Label free novel electrical detection using micromachined PZT monolithic thin film cantilever for the detection of C-reactive protein. Biosensors & Bioelectronics, 20(2), 269–275.CrossRefGoogle Scholar
  99. Lee, M., & Fauchet, P. M. (2007). Two-dimensional silicon photonic crystal based biosensing platform for protein detection. Optics Express, 15(8), 4530–4535.CrossRefGoogle Scholar
  100. Leng, Y., Sun, K., Chen, X., & Li, W. (2015). Suspension arrays based on nanoparticle-encoded microspheres for high-throughput multiplexed detection. Chemical Society Reviews, 44(15), 5552–5595.CrossRefPubMedPubMedCentralGoogle Scholar
  101. Li, C., Ma, J., Fan, Q., Tao, Y., & Li, G. (2016a). Dynamic light scattering (DLS)-based immunoassay for ultra-sensitive detection of tumor marker protein. Chemical Communications, 52(50), 7850–7853.CrossRefGoogle Scholar
  102. Li, D., Fan, Y., Shen, M., Bányai, I., & Shi, X. (2019a). Design of dual drug-loaded dendrimer/carbon dot nanohybrids for fluorescence imaging and enhanced chemotherapy of cancer cells. Journal of Materials Chemistry B, 7(2), 277–285.CrossRefGoogle Scholar
  103. Li, J., Liang, H., Liu, J. & Wang, Z. (2018). Poly (amidoamine)(PAMAM) dendrimer mediated delivery of drug and pDNA/siRNA for cancer therapy. International journal of pharmaceutics.Google Scholar
  104. Li, J., Skeete, Z., Shan, S., Yan, S., Kurzatkowska, K., Zhao, W., et al. (2015). Surface enhanced raman scattering detection of cancer biomarkers with bifunctional nanocomposite probes. Analytical Chemistry, 87(21), 10698–10702.CrossRefGoogle Scholar
  105. Li, Q., Liu, C., & Li, H. (2016b). Induction of endogenous reactive oxygen species in mitochondria by fullerene-based photodynamic therapy. Journal of Nanoscience and Nanotechnology, 16(6), 5592–5597.CrossRefGoogle Scholar
  106. Li, X., Zhang, L. M., Wei, X. P. & Li, J. P. (2013). A sensitive and renewable chlortoluron molecularly imprinted polymer sensor based on the gate-controlled catalytic electrooxidation of H2O2 on magnetic nano-NiO. Electroanalysis (N. Y.), 25 (5), 1286–1293.Google Scholar
  107. Li, X., Zhu, L., Zhou, Y., Yin, H., & Ai, S. (2017). Enhanced Photoelectrochemical Method for Sensitive Detection of Protein Kinase A Activity Using TiO2/g–C3N4, PAMAM Dendrimer, and Alkaline Phosphatase. Analytical Chemistry, 89(4), 2369–2376.CrossRefGoogle Scholar
  108. Li, Y., Yun, K.-H., Lee, H., Goh, S.-H., Suh, Y.-G. & Choi, Y. (2019b). Porous platinum nanoparticles as a high-Z and oxygen generating nanozyme for enhanced radiotherapy in vivo. Biomaterials.Google Scholar
  109. Liang, B., & Tamm, L. K. (2016). NMR as a tool to investigate the structure, dynamics and function of membrane proteins. Nature Structural & Molecular Biology, 23(6), 468.CrossRefGoogle Scholar
  110. Liang, J., Liu, H., Huang, C., Yao, C., Fu, Q., Li, X., et al. (2015). Aggregated silver nanoparticles based surface-enhanced raman scattering enzyme-linked immunosorbent assay for ultrasensitive detection of protein biomarkers and small molecules. Analytical Chemistry, 87(11), 5790–5796.CrossRefGoogle Scholar
  111. Ling, L., Huang, X. Y., & Zhang, W. X. (2018). Enrichment of precious metals from wastewater with core-shell nanoparticles of iron. Advanced Materials, 30(17), e1705703.CrossRefGoogle Scholar
  112. Liu, C., Meng, F., Zheng, W., Xue, T., Jin, Z., Wang, Z., et al. (2016). Plasmonic ZnO nanorods/Au substrates for protein microarrays with high sensitivity and broad dynamic range. Sensors and Actuators B: Chemical, 228, 231–236.CrossRefGoogle Scholar
  113. Liu, D., Zhang, H., Mäkilä, E., Fan, J., Herranz-Blanco, B., Wang, C.-F., et al. (2015). Microfluidic assisted one-step fabrication of porous silicon@ acetalated dextran nanocomposites for precisely controlled combination chemotherapy. Biomaterials, 39, 249–259.CrossRefGoogle Scholar
  114. Luo, Y., Xu, J., Li, Y., Gao, H., Guo, J., Shen, F., et al. (2015). A novel colorimetric aptasensor using cysteamine-stabilized gold nanoparticles as probe for rapid and specific detection of tetracycline in raw milk. Food Control, 54, 7–15.CrossRefGoogle Scholar
  115. Lv, P., Xie, D., & Zhang, Z. (2018). Magnetic carbon dots based molecularly imprinted polymers for fluorescent detection of bovine hemoglobin. Talanta, 188, 145–151.CrossRefGoogle Scholar
  116. Lv, Y., Qin, Y., Svec, F., & Tan, T. (2016). Molecularly imprinted plasmonic nanosensor for selective SERS detection of protein biomarkers. Biosensors & Bioelectronics, 80, 433–441.CrossRefGoogle Scholar
  117. Lyu, Y., Zhen, X., Miao, Y., & Pu, K. (2017). Reaction-Based Semiconducting Polymer Nanoprobes for Photoacoustic Imaging of Protein Sulfenic Acids. ACS Nano, 11(1), 358–367.CrossRefGoogle Scholar
  118. Ma, B., Wang, X., Wu, C., & Chang, J. (2014). Crosslinking strategies for preparation of extracellular matrix-derived cardiovascular scaffolds. Regen Biomater, 1(1), 81–89.CrossRefPubMedPubMedCentralGoogle Scholar
  119. Ma, H., Jiang, L., Hajizadeh, S., Gong, H., Lu, B., & Ye, L. (2018a). Nanoparticle-supported polymer brushes for temperature-regulated glycoprotein separation: investigation of structure–function relationship. Journal of Materials Chemistry B, 6(22), 3770–3781.CrossRefGoogle Scholar
  120. Ma, J., Kala, S., Yung, S., Chan, T. M., Cao, Y., Jiang, Y., et al. (2018b). Blocking Stemness and Metastatic Properties of Ovarian Cancer Cells by Targeting p70(S6 K) with Dendrimer Nanovector-Based siRNA Delivery. Molecular Therapy, 26(1), 70–83.CrossRefGoogle Scholar
  121. Ma, Q., Yang, J., Huang, X., Guo, W., Li, S., Zhou, H., et al. (2018c). Poly (Lactide-Co-Glycolide)-Monomethoxy-Poly-(Polyethylene Glycol) Nanoparticles Loaded with Melatonin Protect Adipose-Derived Stem Cells Transplanted in Infarcted Heart Tissue. Stem Cells, 36(4), 540–550.CrossRefGoogle Scholar
  122. Ma, S., He, J., Guo, M., Sun, X., Zheng, M., & Wang, Y. (2018d). Ultrasensitive colorimetric detection of triazophos based on the aggregation of silver nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 538, 343–349.CrossRefGoogle Scholar
  123. Ma, W., Fu, F., Zhu, J., Huang, R., Zhu, Y., Liu, Z., et al. (2018e). 64Cu-Labeled multifunctional dendrimers for targeted tumor PET imaging. Nanoscale, 10(13), 6113–6124.CrossRefGoogle Scholar
  124. MacBeath, G., & Schreiber, S. L. (2000). Printing proteins as microarrays for high-throughput function determination. Science, 289(5485), 1760–1763.PubMedPubMedCentralGoogle Scholar
  125. Madrakian, T., Afkhami, A., Mahmood-Kashani, H., & Ahmadi, M. (2013). Superparamagnetic surface molecularly imprinted nanoparticles for sensitive solid-phase extraction of tramadol from urine samples. Talanta, 105, 255–261.CrossRefGoogle Scholar
  126. Mangraviti, A., Tzeng, S. Y., Kozielski, K. L., Wang, Y., Jin, Y., Gullotti, D., et al. (2015). Polymeric nanoparticles for nonviral gene therapy extend brain tumor survival in vivo. ACS Nano, 9(2), 1236–1249.CrossRefPubMedPubMedCentralGoogle Scholar
  127. Meng, F., Sun, H., Huang, Y., Tang, Y., Chen, Q., & Miao, P. (2019). Peptide cleavage-based electrochemical biosensor coupling graphene oxide and silver nanoparticles. Analytica Chimica Acta, 1047, 45–51.CrossRefGoogle Scholar
  128. Mignani, S., Rodrigues, J., Tomas, H., Roy, R., Shi, X., & Majoral, J.-P. (2018). Bench-to-bedside translation of dendrimers: Reality or utopia? A concise analysis. Advanced Drug Delivery Reviews, 136, 73–81.CrossRefGoogle Scholar
  129. Miranda, O. R., You, C.-C., Phillips, R., Kim, I.-B., Ghosh, P. S., Bunz, U. H. F., et al. (2007). Array-based sensing of proteins using conjugated polymers. Journal of the American Chemical Society, 129(32), 9856–9857.CrossRefGoogle Scholar
  130. Mitchell, S. F. & Lorsch, J. R. (2015) Protein affinity purification using intein/chitin binding protein tags, Methods in enzymologyElsevier, 111–125.Google Scholar
  131. Moghimi, S. M., & Szebeni, J. (2003). Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Progress in Lipid Research, 42(6), 463–478.CrossRefGoogle Scholar
  132. Mosiashvili, L., Chankvetadze, L., Farkas, T., & Chankvetadze, B. (2013). On the effect of basic and acidic additives on the separation of the enantiomers of some basic drugs with polysaccharide-based chiral selectors and polar organic mobile phases. Journal of Chromatography A, 1317, 167–174.CrossRefGoogle Scholar
  133. Nägele, E., Vollmer, M., Hörth, P., & Vad, C. (2004). 2D-LC/MS techniques for the identification of proteins in highly complex mixtures. Expert review of proteomics, 1(1), 37–46.CrossRefGoogle Scholar
  134. Navarro, G., Cordomí, A., Zelman-Femiak, M., Brugarolas, M., Moreno, E., Aguinaga, D., et al. (2016). Quaternary structure of a G-protein-coupled receptor heterotetramer in complex with G i and G s. BMC Biology, 14(1), 26.CrossRefPubMedPubMedCentralGoogle Scholar
  135. Nguyen, M. M., Carlini, A. S., Chien, M. P., Sonnenberg, S., Luo, C., Braden, R. L., et al. (2015). Enzyme-Responsive Nanoparticles for Targeted Accumulation and Prolonged Retention in Heart Tissue after Myocardial Infarction. Advanced Materials, 27(37), 5547–5552.CrossRefGoogle Scholar
  136. Nosrati, H., Sefidi, N., Sharafi, A., Danafar, H., & Manjili, H. K. (2018). Bovine serum albumin (BSA) coated iron oxide magnetic nanoparticles as biocompatible carriers for curcumin-anticancer drug. Bioorganic Chemistry, 76, 501–509.CrossRefGoogle Scholar
  137. Ogunjimi, A. T., Melo, S. M. G., Vargas-Rechia, C. G., Emery, F. S., & Lopez, R. F. V. (2017). Hydrophilic polymeric nanoparticles prepared from Delonix galactomannan with low cytotoxicity for ocular drug delivery. Carbohydrate Polymers, 157, 1065–1075.CrossRefGoogle Scholar
  138. Oliver-Meseguer, J., Boronat, M., Vidal-Moya, A., Concepción, P., Rivero-Crespo, M. A. n., Leyva-Pérez, A. & Corma, A. (2018) Generation and Reactivity of Electron-Rich Carbenes on the Surface of Catalytic Gold Nanoparticles. Journal of the American Chemical Society, 140 (9), 3215–3218.Google Scholar
  139. Parlak, O., İncel, A., Uzun, L., Turner, A. P. F., & Tiwari, A. (2017). Structuring Au nanoparticles on two-dimensional MoS2 nanosheets for electrochemical glucose biosensors. Biosensors & Bioelectronics, 89, 545–550.CrossRefGoogle Scholar
  140. Pathak, A., Parveen, S., & Gupta, B. D. (2017). Ultrasensitive, highly selective, and real-time detection of protein using functionalized CNTs as MIP platform for FOSPR-based biosensor. Nanotechnology, 28(35), 355503.CrossRefGoogle Scholar
  141. Pavlov, V., Xiao, Y., Shlyahovsky, B., & Willner, I. (2004). Aptamer-Functionalized au nanoparticles for the amplified optical detection of thrombin. Journal of the American Chemical Society, 126(38), 11768–11769.CrossRefGoogle Scholar
  142. Pedone, D., Moglianetti, M., De Luca, E., Bardi, G., & Pompa, P. P. (2017). Platinum nanoparticles in nanobiomedicine. Chemical Society Reviews, 46(16), 4951–4975.CrossRefGoogle Scholar
  143. Peterson, R. D., Chen, W., Cunningham, B. T., & Andrade, J. E. (2015). Enhanced sandwich immunoassay using antibody-functionalized magnetic iron-oxide nanoparticles for extraction and detection of soluble transferrin receptor on a photonic crystal biosensor. Biosensors & Bioelectronics, 74, 815–822.CrossRefGoogle Scholar
  144. Polikarpov, N., Potolytsyna, V., Bessonova, E., Tripp, S., Appelhans, D., Voit, B., et al. (2015). Dendritic glycopolymers as dynamic and covalent coating in capillary electrophoresis: View on protein separation processes and detection of nanogram-scaled albumin in biological samples. Journal of Chromatography A, 1378, 65–73.CrossRefGoogle Scholar
  145. Polo, E., del Pino, P., Pardo, A., Taboada, P. & Pelaz, B. (2018) Magnetic Nanoparticles for Cancer Therapy and Bioimaging, NanooncologySpringer, 239–279.Google Scholar
  146. Qian, J., Dai, H., Pan, X., & Liu, S. (2011). Simultaneous detection of dual proteins using quantum dots coated silica nanoparticles as labels. Biosensors & Bioelectronics, 28(1), 314–319.CrossRefGoogle Scholar
  147. Qin, L., Huang, D., Xu, P., Zeng, G., Lai, C., Fu, Y., et al. (2019). In-situ deposition of gold nanoparticles onto polydopamine-decorated g-C3N4 for highly efficient reduction of nitroaromatics in environmental water purification. Journal of Colloid and Interface Science, 534, 357–369.CrossRefGoogle Scholar
  148. Qu, Q., Liu, Y., Shi, W., Yan, C., & Tang, X. (2015). Tunable thick porous silica coating fabricated by multilayer-by-multilayer bonding of silica nanoparticles for open-tubular capillary chromatographic separation. Journal of Chromatography A, 1399, 25–31.CrossRefGoogle Scholar
  149. Raeeszadeh-Sarmazdeh, M., Hartzell, E., Price, J. V., & Chen, W. (2016). Protein nanoparticles as multifunctional biocatalysts and health assessment sensors. Current Opinion in Chemical Engineering, 13, 109–118.CrossRefPubMedPubMedCentralGoogle Scholar
  150. Rohela, G. K., Srinivasulu, Y., & Rathore, M. S. (2019). A review paper on recent trends in bio-nanotechnology: implications and potentials. Nanoscience & Nanotechnology-Asia, 9(1), 12–20.CrossRefGoogle Scholar
  151. Rosenberg, I. M. (2013) Protein analysis and purification: benchtop techniquesSpringer Science & Business Media.Google Scholar
  152. Rychahou, P., Bae, Y., Reichel, D., Zaytseva, Y. Y., Lee, E. Y., Napier, D., et al. (2018). Colorectal cancer lung metastasis treatment with polymer–drug nanoparticles. Journal of Controlled Release, 275, 85–91.CrossRefPubMedPubMedCentralGoogle Scholar
  153. Sanjai, C., Kothan, S., Gonil, P., Saesoo, S., & Sajomsang, W. (2014). Chitosan-triphosphate nanoparticles for encapsulation of super-paramagnetic iron oxide as an MRI contrast agent. Carbohydrate Polymers, 104, 231–237.CrossRefGoogle Scholar
  154. Sardesai, N., Pan, S. & Rusling, J. (2009) Electrochemiluminescent immunosensor for detection of protein cancer biomarkers using carbon nanotube forests and [Ru-(bpy) 3] 2+-doped silica nanoparticles. Chemical Communications (33), 4968–4970.Google Scholar
  155. Sarkar, A., Hou, H. W., Mahan, A. E., Han, J., & Alter, G. (2016). Multiplexed affinity-based separation of proteins and cells using inertial microfluidics. Scientific Reports, 6, 23589.CrossRefPubMedPubMedCentralGoogle Scholar
  156. Sengani, M., Grumezescu, A. M., & Rajeswari, V. D. (2017). Recent trends and methodologies in gold nanoparticle synthesis–A prospective review on drug delivery aspect. OpenNano, 2, 37–46.CrossRefGoogle Scholar
  157. Shaheen, T. I., & Abd El Aty, A. A. (2018). In-situ green myco-synthesis of silver nanoparticles onto cotton fabrics for broad spectrum antimicrobial activity. International Journal of Biological Macromolecules, 118, 2121–2130.CrossRefGoogle Scholar
  158. Shan, G., Wang, S., Fei, X., Liu, Y., & Yang, G. (2009). Heterostructured ZnO/Au nanoparticles-based resonant raman scattering for protein detection. The Journal of Physical Chemistry B, 113(5), 1468–1472.CrossRefGoogle Scholar
  159. Shen, S., Wu, Y., Liu, Y., & Wu, D. (2017). High drug-loading nanomedicines: progress, current status, and prospects. International Journal of Nanomedicine, 12, 4085.CrossRefPubMedPubMedCentralGoogle Scholar
  160. Shete, P. B., Patil, R. M., Thorat, N. D., Prasad, A., Ningthoujam, R. S., Ghosh, S. J., et al. (2014). Magnetic chitosan nanocomposite for hyperthermia therapy application: Preparation, characterization and in vitro experiments. Applied Surface Science, 288, 149–157.CrossRefGoogle Scholar
  161. Silvan, J. M., Zorraquin-Peña, I., Gonzalez de Llano, D., Moreno-Arribas, M., & Martinez-Rodriguez, A. J. (2018). Antibacterial activity of glutathione-stabilized silver nanoparticles against campylobacter multidrug-resistant strains. Frontiers in microbiology, 9, 458.CrossRefPubMedPubMedCentralGoogle Scholar
  162. Singal, S., Srivastava, A. K. & Rajesh (2016). Electrochemical impedance analysis of biofunctionalized conducting polymer-modified graphene-CNTs nanocomposite for protein detection. Nano-Micro Letters, 9 (1), 7.Google Scholar
  163. Singh, H., Du, J., Singh, P., & Yi, T. H. (2018). Extracellular synthesis of silver nanoparticles by Pseudomonas sp. THG-LS1. 4 and their antimicrobial application. Journal of Pharmaceutical Analysis, 8(4), 258–264.Google Scholar
  164. Singh, P., Kim, Y. J., Zhang, D., & Yang, D. C. (2016). Biological synthesis of nanoparticles from plants and microorganisms. Trends in Biotechnology, 34(7), 588–599.CrossRefGoogle Scholar
  165. Son, H., Ku, J., Kim, Y., Li, S., & Char, K. (2018). Amine-Reactive Poly(pentafluorophenyl acrylate) Brush Platforms for Cleaner Protein Purification. Biomacromolecules, 19(3), 951–961.CrossRefGoogle Scholar
  166. Song, J., Wu, F., Wan, Y., & Ma, L. (2015). Colorimetric detection of melamine in pretreated milk using silver nanoparticles functionalized with sulfanilic acid. Food Control, 50, 356–361.CrossRefGoogle Scholar
  167. Song, Y., Tao, L., & Shen, X. (2012). Synthesis of new type of Au-magnetic nanocomposite and application for protein separation thereof. Nanoscale Research Letters, 7(1), 369.CrossRefPubMedPubMedCentralGoogle Scholar
  168. Stoeva, S. I., Lee, J.-S., Smith, J. E., Rosen, S. T., & Mirkin, C. A. (2006). Multiplexed detection of protein cancer markers with biobarcoded nanoparticle probes. Journal of the American Chemical Society, 128(26), 8378–8379.CrossRefGoogle Scholar
  169. Strehlitz, B., Nikolaus, N. & Stoltenburg, R. (2008). Protein detection with aptamer biosensors. Sensors, 8 (7), 4296–4307.Google Scholar
  170. Su, F., Jia, Q., Li, Z., Wang, M., He, L., Peng, D., et al. (2019). Aptamer-templated silver nanoclusters embedded in zirconium metal–organic framework for targeted antitumor drug delivery. Microporous and Mesoporous Materials, 275, 152–162.CrossRefGoogle Scholar
  171. Su, Y., Qiu, B., Chang, C., Li, X., Zhang, M., Zhou, B., et al. (2018). Separation of bovine hemoglobin using novel magnetic molecular imprinted nanoparticles. RSC Advances, 8(11), 6192–6199.CrossRefGoogle Scholar
  172. Sun, W., Lu, Y., Mao, J., Chang, N., Yang, J., & Liu, Y. (2015). Multidimensional sensor for pattern recognition of proteins based on DNA–gold nanoparticles conjugates. Analytical Chemistry, 87(6), 3354–3359.CrossRefGoogle Scholar
  173. Sun, X., Li, W., Zhang, X., Qi, M., Zhang, Z., Zhang, X.-E., et al. (2016). In vivo targeting and imaging of atherosclerosis using multifunctional virus-like particles of simian virus 40. Nano Letters, 16(10), 6164–6171.CrossRefGoogle Scholar
  174. Syafiuddin, A., Salim, M. R., Beng Hong Kueh, A., Hadibarata, T. & Nur, H. (2017) A review of silver nanoparticles: Research trends, global consumption, synthesis, properties, and future challenges. Journal of the Chinese Chemical Society, 64 (7), 732–756.Google Scholar
  175. Terborg, L., Masini, J. C., Lin, M., Lipponen, K., Riekolla, M.-L., & Svec, F. (2015). Porous polymer monolithic columns with gold nanoparticles as an intermediate ligand for the separation of proteins in reverse phase-ion exchange mixed mode. Journal of Advanced Research, 6(3), 441–448.CrossRefGoogle Scholar
  176. Vunain, E., Mishra, A. K., & Mamba, B. B. (2016). Dendrimers, mesoporous silicas and chitosan-based nanosorbents for the removal of heavy-metal ions: A review. International Journal of Biological Macromolecules, 86, 570–586.CrossRefGoogle Scholar
  177. Vural, T., Yaman, Y. T., Ozturk, S., Abaci, S., & Denkbas, E. B. (2018). Electrochemical immunoassay for detection of prostate specific antigen based on peptide nanotube-gold nanoparticle-polyaniline immobilized pencil graphite electrode. Journal of Colloid and Interface Science, 510, 318–326.CrossRefGoogle Scholar
  178. Wang, H.-B., Zhang, H.-D., Chen, Y., & Liu, Y.-M. (2015a). A fluorescent biosensor for protein detection based on poly (thymine)-templated copper nanoparticles and terminal protection of small molecule-linked DNA. Biosensors & Bioelectronics, 74, 581–586.CrossRefGoogle Scholar
  179. Wang, J.-X., Zhuo, Y., Zhou, Y., Wang, H.-J., Yuan, R., & Chai, Y.-Q. (2016a). Ceria doped zinc oxide nanoflowers enhanced luminol-based electrochemiluminescence immunosensor for amyloid-β detection. ACS Applied Materials & Interfaces, 8(20), 12968–12975.CrossRefGoogle Scholar
  180. Wang, J., Zhao, W.-W., Li, X.-R., Xu, J.-J., & Chen, H.-Y. (2012). Potassium-doped graphene enhanced electrochemiluminescence of SiO2@CdS nanocomposites for sensitive detection of TATA-binding protein. Chemical Communications, 48(51), 6429–6431.CrossRefGoogle Scholar
  181. Wang, L., Sun, Y., Wang, J., Wang, J., Yu, A., Zhang, H., et al. (2010). Water-soluble ZnO–Au nanocomposite-based probe for enhanced protein detection in a SPR biosensor system. Journal of Colloid and Interface Science, 351(2), 392–397.CrossRefGoogle Scholar
  182. Wang, M., Zheng, K.-Y., Lv, S.-W., Zou, H.-F., Liu, H.-S., Yan, G.-L., et al. (2018a). Preparation and characterization of universal Fe3O4@SiO2/CdTe nanocomposites for rapid and facile detection and separation of membrane proteins. New Journal of Chemistry, 42(7), 4981–4990.CrossRefGoogle Scholar
  183. Wang, P., Zhang, L., Zheng, W., Cong, L., Guo, Z., Xie, Y., et al. (2018b). Thermo-triggered Release of CRISPR-Cas9 System by Lipid-Encapsulated Gold Nanoparticles for Tumor Therapy. Angewandte Chemie International Edition, 57(6), 1491–1496.CrossRefGoogle Scholar
  184. Wang, S., Peng, J., Ma, J., & Xu, J. (2016b). Protein secondary structure prediction using deep convolutional neural fields. Scientific reports, 6, 18962.CrossRefPubMedPubMedCentralGoogle Scholar
  185. Wang, W., Wang, W., Davis, J. J., & Luo, X. (2015b). Ultrasensitive and selective voltammetric aptasensor for dopamine based on a conducting polymer nanocomposite doped with graphene oxide. Microchimica Acta, 182(5), 1123–1129.CrossRefGoogle Scholar
  186. Wang, X., Li, S., Zhang, P., Lv, F., Liu, L., Li, L., et al. (2015c). An Optical Nanoruler Based on a Conjugated Polymer− Silver Nanoprism Pair for Label-Free Protein Detection. Advanced Materials, 27(39), 6040–6045.CrossRefGoogle Scholar
  187. Wang, X., Xia, J., Wang, C., Liu, L., Zhu, S., Feng, W., et al. (2017). Preparation of novel fluorescent nanocomposites based on Au nanoclusters and their application in targeted detection of cancer cells. ACS Applied Materials & Interfaces, 9(51), 44856–44863.CrossRefGoogle Scholar
  188. Wang, X., Zhou, J., Yun, W., Xiao, S., Chang, Z., He, P., et al. (2007). Detection of thrombin using electrogenerated chemiluminescence based on Ru (bpy) 32+-doped silica nanoparticle aptasensor via target protein-induced strand displacement. Analytica Chimica Acta, 598(2), 242–248.CrossRefGoogle Scholar
  189. Wang, Y., Fan, D., Zhao, G., Feng, J., Wei, D., Zhang, N., et al. (2018c). Ultrasensitive photoelectrochemical immunosensor for the detection of amyloid β-protein based on SnO2/SnS2/Ag2S nanocomposites. Biosensors & Bioelectronics, 120, 1–7.CrossRefGoogle Scholar
  190. Wang, Z., Lee, J., Cossins, A. R., & Brust, M. (2005). Microarray-based detection of protein binding and functionality by gold nanoparticle probes. Analytical Chemistry, 77(17), 5770–5774.CrossRefGoogle Scholar
  191. Wang, E., R., Zhang, Y., Cai, J., Cai, W. & Gao, T. (2011). Aptamer-based fluorescent biosensors. Current medicinal Chemistry, 18 (27), 4175–4184.Google Scholar
  192. Wu, H., Huo, Q., Varnum, S., Wang, J., Liu, G., Nie, Z., et al. (2008). Dye-doped silica nanoparticle labels/protein microarray for detection of protein biomarkers. Analyst, 133(11), 1550–1555.CrossRefPubMedPubMedCentralGoogle Scholar
  193. Xu, J., Sun, J., Wang, Y., Sheng, J., Wang, F., & Sun, M. (2014). Application of iron magnetic nanoparticles in protein immobilization. Molecules, 19(8), 11465–11486.CrossRefPubMedPubMedCentralGoogle Scholar
  194. Yan, L., Zhang, Q., Zhang, J., Zhang, L., Li, T., Feng, Y., et al. (2004). Hybrid organic–inorganic monolithic stationary phase for acidic compounds separation by capillary electrochromatography. Journal of Chromatography A, 1046(1–2), 255–261.CrossRefGoogle Scholar
  195. Yang, M., Javadi, A., & Gong, S. (2011). Sensitive electrochemical immunosensor for the detection of cancer biomarker using quantum dot functionalized graphene sheets as labels. Sensors and Actuators B: Chemical, 155(1), 357–360.CrossRefGoogle Scholar
  196. Yang, Z.-H., Zhuo, Y., Yuan, R., & Chai, Y.-Q. (2016). Electrochemical activity and electrocatalytic property of cobalt phthalocyanine nanoparticles-based immunosensor for sensitive detection of procalcitonin. Sensors and Actuators B: Chemical, 227, 212–219.CrossRefGoogle Scholar
  197. Yoon, H., Kim, J. H., Lee, N., Kim, B. G., & Jang, J. (2008). A novel sensor platform based on aptamer-conjugated polypyrrole nanotubes for label-free electrochemical protein detection. ChemBioChem, 9(4), 634–641.CrossRefGoogle Scholar
  198. You, C.-C., Miranda, O. R., Gider, B., Ghosh, P. S., Kim, I.-B., Erdogan, B., et al. (2007). Detection and identification of proteins using nanoparticle–fluorescent polymer ‘chemical nose’sensors. Nature Nanotechnology, 2(5), 318.CrossRefGoogle Scholar
  199. Yukird, J., Wongtangprasert, T., Rangkupan, R., Chailapakul, O., Pisitkun, T., & Rodthongkum, N. (2017). Label-free immunosensor based on graphene/polyaniline nanocomposite for neutrophil gelatinase-associated lipocalin detection. Biosensors & Bioelectronics, 87, 249–255.CrossRefGoogle Scholar
  200. Zarei, M. (2017). Application of nanocomposite polymer hydrogels for ultra-sensitive fluorescence detection of proteins in gel electrophoresis. TrAC Trends in Analytical Chemistry, 93, 7–22.CrossRefGoogle Scholar
  201. Zengin Kurt, B., Uckaya, F., & Durmus, Z. (2017). Chitosan and carboxymethyl cellulose based magnetic nanocomposites for application of peroxidase purification. International Journal of Biological Macromolecules, 96, 149–160.CrossRefGoogle Scholar
  202. Zhang, B., He, C., Chen, X., Tian, Z., & Li, F. (2015). The synergistic effect of polyamidoamine dendrimers and sodium silicate on the corrosion of carbon steel in soft water. Corrosion Science, 90, 585–596.CrossRefGoogle Scholar
  203. Zhang, T., Guo, W., Zhang, C., Yu, J., Xu, J., Li, S., et al. (2017). Transferrin-dressed virus-like ternary nanoparticles with aggregation-induced emission for targeted delivery and rapid cytosolic release of siRNA. ACS Applied Materials & Interfaces, 9(19), 16006–16014.CrossRefGoogle Scholar
  204. Zhang, Y., Li, D., Yu, M., Ma, W., Guo, J., & Wang, C. (2014). Fe3O4/PVIM-Ni2+ Magnetic Composite Microspheres for Highly Specific Separation of Histidine-Rich Proteins. ACS Applied Materials & Interfaces, 6(11), 8836–8844.CrossRefGoogle Scholar
  205. Zhang, Y., Wang, G., Yang, L., Wang, F., & Liu, A. (2018). Recent advances in gold nanostructures based biosensing and bioimaging. Coordination Chemistry Reviews, 370, 1–21.CrossRefGoogle Scholar
  206. Zhao, J., Hu, S., Cao, Y., Zhang, B., & Li, G. (2015a). Electrochemical detection of protein based on hybridization chain reaction-assisted formation of copper nanoparticles. Biosensors & Bioelectronics, 66, 327–331.CrossRefGoogle Scholar
  207. Zhao, J., Pan, N., Huang, F., Aldarouish, M., Wen, Z., Gao, R., et al. (2018). Vx3-functionalized alumina nanoparticles assisted enrichment of ubiquitinated proteins from cancer cells for enhanced cancer immunotherapy. Bioconjugate Chemistry, 29(3), 786–794.CrossRefGoogle Scholar
  208. Zhao, M., Zhuo, Y., Chai, Y.-Q., & Yuan, R. (2015b). Au nanoparticles decorated C60 nanoparticle-based label-free electrochemiluminesence aptasensor via a novel “on-off-on” switch system. Biomaterials, 52, 476–483.CrossRefGoogle Scholar
  209. Zhao, Y., Liu, X., Li, J., Qiang, W., Sun, L., Li, H., et al. (2016). Microfluidic chip-based silver nanoparticles aptasensor for colorimetric detection of thrombin. Talanta, 150, 81–87.CrossRefGoogle Scholar
  210. Zheng, J., Lin, Z., Lin, G., Yang, H., & Zhang, L. (2015). Preparation of magnetic metal–organic framework nanocomposites for highly specific separation of histidine-rich proteins. Journal of Materials Chemistry B, 3(10), 2185–2191.CrossRefGoogle Scholar
  211. Zheng, J., Lin, Z., Liu, W., Wang, L., Zhao, S., Yang, H., et al. (2014). One-pot synthesis of CuFe2O4 magnetic nanocrystal clusters for highly specific separation of histidine-rich proteins. Journal of Materials Chemistry B, 2(37), 6207–6214.CrossRefGoogle Scholar
  212. Zhou, X., Xu, W., Wang, Y., Kuang, Q., Shi, Y., Zhong, L., et al. (2010). Fabrication of Cluster/Shell Fe3O4/Au Nanoparticles and Application in Protein Detection via a SERS Method. The Journal of Physical Chemistry C, 114(46), 19607–19613.CrossRefGoogle Scholar
  213. Zhu, C., Lv, Y., Qian, C., Qian, H., Jiao, T., Wang, L., et al. (2016). Proliferation and osteogenic differentiation of rat BMSCs on a novel Ti/SiC metal matrix nanocomposite modified by friction stir processing. Scientific Reports, 6, 38875.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jaison Jeevanandam
    • 1
  • Prabir Kumar Kulabhusan
    • 2
  • Michael K. Danquah
    • 3
    Email author
  1. 1.Faculty of Engineering and Science, Department of Chemical EngineeringCurtin UniversityMiriMalaysia
  2. 2.Department of Chemistry and Biomolecular ScienceUniversity of OttawaOntarioCanada
  3. 3.Chemical Engineering DepartmentUniversity of TennesseeChattanoogaUSA

Personalised recommendations