Advertisement

Role of Biofilms in Bioprocesses: A Framework for Multidimensional IBM Modelling of Heterogeneous Biofilms

  • Lakshmi MachineniEmail author
  • Parag D. Pawar
Chapter

Abstract

During the past few decades, biofilm formation by a variety of microbial strains has attracted much attention, mainly in the medical and industrial settings due to their high resistance to antibiotics. However, environmental scientists and biochemical engineers have realized the importance of biofilm growth dynamics and their biocatalytic activity. For instance, the ability to forecast and control microbial communities has led to enhance biogas production and a better characterization of biofilm importance in wastewater treatment systems. Thus, understanding the fundamental processes contributing to biofilm growth is useful to anyone involved with natural or industrial settings where biofilms may play a significant role in determining variables such as bulk water quality, toxic compound biodegradation or product quality. Investigation of individual microcolonies within a biofilm using powerful microscopic tools has fueled the creation of biofilm models that reproduce biofilm growth dynamics and interactions. Mathematical frameworks that describe heterogeneous bacterial biofilms formation have greatly contributed to our understanding of physiochemical and biological principles of biofilm spreading dynamics. A clear understanding of heterogeneities at the local scale may be vital to solving the riddle of the complex nature of microbial communities, which is crucial to improve the performance, robustness and stability of biofilm-associated bioprocess.

Keywords

Biofilm Biogas Wastewater treatment IBM model Growth dynamics Heterogeneity 

References

  1. Alpkvist, E., & Klapper, I. (2007). A multidimensional multispecies continuum model for heterogeneous biofilm development. Bulletin of Mathematical Biology, 69(2), 765–789.CrossRefGoogle Scholar
  2. Andreottola, G., Foladori, P., Ragazzi, M., & Villa, R. (2002). Dairy wastewater treatment in a moving bed biofilm reactor. Water Science and Technology, 45(12), 321–328.CrossRefGoogle Scholar
  3. Ardre, M., Henry, H., Douarche, C., & Plapp, M. (2015). An individual-based model for biofilm formation at liquid surfaces. Physical Biology, 12(6), 066015.CrossRefGoogle Scholar
  4. Barraud, N., Hassett, D. J., Hwang, S. H., Rice, S. A., Kjelleberg, S., & Webb, J. S. (2006). Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. Journal of Bacteriology, 188(21), 7344–7353.CrossRefGoogle Scholar
  5. Beerman, H., Bonsing, B. A., van de Vijver, M. J., Hermans, J., Kluin, P. M., Caspers, R. J., et al. (1991). DNA ploidy of primary breast cancer and local recurrence after breast-conserving therapy. British Journal of Cancer, 64(1), 139–143.CrossRefGoogle Scholar
  6. Bengelsdorf, F., Langer, S., Kern, M., Zak, M., & Kazda, M. (2014). Additional biofilms improve the anaerobic digestion of food leftovers.Google Scholar
  7. Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R., & Lappin-Scott, H. M. (1995). Microbial biofilms. Annual Review of Microbiology, 49, 711–745.CrossRefGoogle Scholar
  8. Davenport, E. K., Call, D. R., & Beyenal, H. (2014). Differential protection from tobramycin by extracellular polymeric substances from Acinetobacter baumannii and Staphylococcus aureus biofilms. Antimicrobial Agents and Chemotherapy, 58(8), 4755–4761.CrossRefGoogle Scholar
  9. Duddu, R., Chopp, D. L., & Moran, B. (2009). A two-dimensional continuum model of biofilm growth incorporating fluid flow and shear stress based detachment. Biotechnology and Bioengineering, 103(1), 92–104.CrossRefGoogle Scholar
  10. Edgerton, M., & McCall, A. (2017). Real-time approach to flow cell imaging of candida albicans biofilm development. Journal of Fungi, 3(1).Google Scholar
  11. Emerenini, B. O., Hense, B. A., Kuttler, C., & Eberl, H. J. (2015). A mathematical model of quorum sensing induced biofilm detachment. PLoS One, 10(7), e0132385.CrossRefGoogle Scholar
  12. Fagerlind, M. G., Webb, J. S., Barraud, N., McDougald, D., Jansson, A., Nilsson, P., et al. (2012). Dynamic modelling of cell death during biofilm development. Journal of Theoretical Biology, 295, 23–36.CrossRefGoogle Scholar
  13. Fish, K. E., & Boxall, J. B. (2018). Biofilm microbiome (Re) growth dynamics in drinking water distribution systems are impacted by chlorine concentration. Frontiers in Microbiology, 9, 2519.CrossRefGoogle Scholar
  14. Flemming, H.-C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S. A., & Kjelleberg, S. (2016). Biofilms: An emergent form of bacterial life. Nature Reviews Microbiology, 14(9), 563–575.Google Scholar
  15. Frederick, M. R., Kuttler, C., Hense, B. A., & Eberl, H. J. (2011). A mathematical model of quorum sensing regulated EPS production in biofilm communities. Theoretical Biology and Medical Modelling, 8, 8.CrossRefGoogle Scholar
  16. Goswami, R., Chattopadhyay, P., Shome, A., Banerjee, S. N., Chakraborty, A. K., Mathew, A. K., et al. (2016). An overview of physico-chemical mechanisms of biogas production by microbial communities: A step towards sustainable waste management. 3 Biotech, 6(1), 72.Google Scholar
  17. Hall, C. W., & Mah, T. F. (2017). Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiology Reviews, 41(3), 276–301.CrossRefGoogle Scholar
  18. Jayathilake, P. G., Gupta, P., Li, B., Madsen, C., Oyebamiji, O., Gonzalez-Cabaleiro, R., et al. (2017). A mechanistic Individual-based Model of microbial communities. PLoS ONE, 12(8), e0181965.CrossRefGoogle Scholar
  19. Jefferson, K. K. (2004). What drives bacteria to produce a biofilm? FEMS Microbiology Letters, 236(2), 163–173.CrossRefGoogle Scholar
  20. Lamotta, E. J. (1976). Internal diffusion and reaction in biological films. Environmental Science and Technology, 10(8), 765–769.CrossRefGoogle Scholar
  21. Langer, S., Schropp, D., Bengelsdorf, F. R., Othman, M., & Kazda, M. (2014). Dynamics of biofilm formation during anaerobic digestion of organic waste. Anaerobe, 29, 44–51.CrossRefGoogle Scholar
  22. Li, C., Zhang, Y., & Yehuda C. (2015). Individual based modeling of Pseudomonas aeruginosa biofilm with three detachment mechanisms. RSC Advances.Google Scholar
  23. Limoli, D. H., Jones, C. J., & Wozniak, D. J. (2015). Bacterial extracellular polysaccharides in biofilm formation and function. Microbiology Spectrum, 3(3).Google Scholar
  24. Liu, Y., Zhu, Y., Jia, H., Yong, X., Zhang, L., Zhou, J., et al. (2017). Effects of different biofilm carriers on biogas production during anaerobic digestion of corn straw. Bioresource Technology, 244(Pt 1), 445–451.CrossRefGoogle Scholar
  25. Machineni, L., Rajapantul, A., Nandamuri, V., & Pawar, P. D. (2017). Influence of nutrient availability and quorum sensing on the formation of metabolically inactive microcolonies within structurally heterogeneous bacterial biofilms: An individual-based 3D cellular automata model. Bulletin of Mathematical Biology, 79(3), 594–618.Google Scholar
  26. Machineni, L., Ch. Tejesh Reddy, Nandamuri, V., & Pawar, P. D. (2018). A 3D individual‐based model to investigate the spatially heterogeneous response of bacterial biofilms to antimicrobial agents. Mathematical Methods in the Applied Sciences, 41(18).Google Scholar
  27. Maksimova, Y. G. (2014). Microbial biofilms in biotechnological processes. Applied Biochemistry and Microbiology, 50(8), 750–760.CrossRefGoogle Scholar
  28. Martens, E., & Demain, A. L. (2017). The antibiotic resistance crisis, with a focus on the United States. The Journal of Antibiotics (Tokyo), 70(5), 520–526.CrossRefGoogle Scholar
  29. Miranda, A. F., Ramkumar, N., Andriotis, C., Holtkemeier, T., Yasmin, A., Rochfort, S., et al. (2017). Applications of microalgal biofilms for wastewater treatment and bioenergy production. Biotechnology for Biofuels, 10, 120.CrossRefGoogle Scholar
  30. Muñoz, A. J., Espínola, F., Moya, M., & Ruiz, E. (2015). Biosorption of Pb(II) Ions by Klebsiella sp. 3S1 isolated from a wastewater treatment plant: Kinetics and mechanisms studies. BioMed Research International, 2015, 12.Google Scholar
  31. Najafpour, G., & Ebrahimi, A. (2016). Biological treatment processes: Suspended growth vs. attached growth.Google Scholar
  32. Picioreanu, C., Kreft, J. U., & Van Loosdrecht, M. C. (2004). Particle-based multidimensional multispecies biofilm model. Applied and Environment Microbiology, 70(5), 3024–3040.CrossRefGoogle Scholar
  33. Postgate, J. R., & Hunter, J. R. (1962). The survival of starved bacteria. Journal of General Microbiology, 29, 233–263.CrossRefGoogle Scholar
  34. Qureshi, N., Annous, B. A., Ezeji, T. C., Karcher, P., & Maddox, I. S. (2005). Biofilm reactors for industrial bioconversion processes: Employing potential of enhanced reaction rates. Microbial Cell Factories, 4, 24.CrossRefGoogle Scholar
  35. Sauer, K. (2003). The genomics and proteomics of biofilm formation. Genome Biology, 4(6), 219.CrossRefGoogle Scholar
  36. Sauer, K., Camper, A. K., Ehrlich, G. D., Costerton, J. W., & Davies, D. G. (2002). Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. Journal of Bacteriology, 184(4), 1140–1154.CrossRefGoogle Scholar
  37. Schnurer, A. (2016). Biogas production: Microbiology and technology. Advances in Biochemical Engineering/Biotechnology, 156, 195–234.PubMedGoogle Scholar
  38. Shih, P. C., & Huang, C. T. (2002). Effects of quorum-sensing deficiency on Pseudomonas aeruginosa biofilm formation and antibiotic resistance. Journal of Antimicrobial Chemotherapy, 49(2), 309–314.CrossRefGoogle Scholar
  39. Stoodley, P., Lewandowski, Z., Boyle, J. D., & Lappin-Scott, H. M. (1999). Structural deformation of bacterial biofilms caused by short-term fluctuations in fluid shear: An in situ investigation of biofilm rheology. Biotechnology and Bioengineering, 65(1), 83–92.CrossRefGoogle Scholar
  40. Stoodley, P., Cargo, R., Rupp, C. J., Wilson, S., & Klapper, I. (2002). Biofilm material properties as related to shear-induced deformation and detachment phenomena. Journal of Industrial Microbiology and Biotechnology, 29(6), 361–367.CrossRefGoogle Scholar
  41. Tang, K., Ooi, G. T. H., Litty, K., Sundmark, K., Kaarsholm, K. M. S., Sund, C., et al. (2017). Removal of pharmaceuticals in conventionally treated wastewater by a polishing moving bed biofilm reactor (MBBR) with intermittent feeding. Bioresource Technology, 236, 77–86.CrossRefGoogle Scholar
  42. Teitzel, G. M., & Parsek, M. R. (2003). Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Applied and Environment Microbiology, 69(4), 2313–2320.CrossRefGoogle Scholar
  43. Tsuneda, S., Aikawa, H., Hayashi, H., Yuasa, A., & Hirata, A. (2003). Extracellular polymeric substances responsible for bacterial adhesion onto solid surface. FEMS Microbiology Letters, 223(2), 287–292.CrossRefGoogle Scholar
  44. Valero, D., Rico, C., Canto-Canché, B., Domínguez-Maldonado, J. A., Tapia-Tussell, R., Cortes-Velazquez, A., Alzate-Gaviria, L. (2018). Enhancing biochemical methane potential and enrichment of specific electroactive communities from nixtamalization wastewater using granular activated carbon as a conductive material. Energies, 11.Google Scholar
  45. Wanner O, Eberl, H., Morgenroth, E., Noguera, D., Picioreanu, C., Rittmann, B. E., et al. (2006). Mathematical modeling of biofilms, IWA Scientific and Technical Report No.18, IWA Publishing.Google Scholar
  46. Wang, L., Fan, D., Chen, W., & Terentjev, E. M. (2015). Bacterial growth, detachment and cell size control on polyethylene terephthalate surfaces. Scientific Reports, 5, 15159.CrossRefGoogle Scholar
  47. Williamson, K., & McCarty, P. L. (1976). A model of substrate utilization by bacterial films. Journal of Water Pollution Control Federation, 48(1), 9–24.Google Scholar
  48. Zainol, N., Salihon, J., & Abdul-Rahman, R. (2009). Biogas production from waste using biofilm reactor: factor analysis in two stages system.Google Scholar
  49. Zhang, X., Wang, X., Nie, K., Li, M., & Sun, Q. (2016). Simulation of Bacillus subtilis biofilm growth on agar plate by diffusion-reaction based continuum model. Physical Biology, 13(4), 046002.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.CSIR-IICTHyderabadIndia
  2. 2.Department of Chemical EngineeringIndian Institute of Technology HyderabadMedakIndia

Personalised recommendations