Advertisement

Conversion of Biomass to Methanol and Ethanol

  • G. Karthiga DeviEmail author
  • S. Chozhavendhan
  • J. Jayamuthunagai
  • B. Bharathiraja
  • R. Praveen kumar
Chapter

Abstract

The rapid exhaustion of fossil fuels and greenhouse effect leads to work on alternate energy and fuel source. In which, ethanol and methanol are widely discussed as an alternate for fuels over the decade. Fuels derived from the microbial biomass are one of the most promising renewable energy resources when compared to the conventional fuels from the petroleum reserves, which create excessive green gas emissions. The microbes are ubiquitous and many microbes are capable of converting the carbon source into primary metabolites, especially alcohols. Waste material generated from the industries like biodiesel, cassava, paper and pulp industries are rich in carbon and cellulose, which can be utilized by the microbes as carbon and energy source for the production of ethanol and methanol.

Keywords

Microbes Biofuel Genetic engineering 

References

  1. Bensaid, S., Conti, R., & Fino, D. (2012). Direct liquefaction of ligno-cellulosic residues for liquid fuel production. Fuel, 94, 324–332.CrossRefGoogle Scholar
  2. Bharathiraja, B., Jayamuthunagai, J., Praveenkumar, R., VinothArulraj, J., Vinoshmuthukumar, P., & Saravanaraj A. (2014). Bioethanol production from lignocellulosic materials—An overview.Google Scholar
  3. Boerrigter, H., den Uil, H., Calis, H. P. (2003). Green diesel from biomass via Fischer– Tropsch synthesis: new insights in gas cleaning and process design. Pyrolysis and Gasification of Biomass and Waste, 1–13.Google Scholar
  4. Bridgwater, A. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 38, 68–94.CrossRefGoogle Scholar
  5. Bridgwater, A., Meier, D., Radlei, D. (1999). An overview of fast pyrolysis of biomass. Organic Geochemistry 30(12), 1479–1493.Google Scholar
  6. Brown, R. C., & Holmgren, J. (2009). Fast pyrolysis and bio-oil upgrading. Gas, 13, 25.Google Scholar
  7. Cadoux, S., Riche, A. B., Yates, N. E., & Machet, J. M. (2012). Nutrient requirements of Miscanthus x giganteus: Conclusions from a review of published studies. Biomass and Bioenergy, 38, 14–22.CrossRefGoogle Scholar
  8. Chozhavendhan, S., Praveen Kumar, R., Sivarathnakumar, S., VinothArulraj, J., Elavazhagan, S., Bharathirja, B., & Sunita, J. V. (2017). Production of ethanol by Zymomonasmobilis using partially purified glycerol. Journal of Energy and Environmental Sustainability, 4, 15–19.Google Scholar
  9. Chozhavendhan, S., Praveen Kumar, R., Bharathiraja, B., & Jayakumar, M. (2016). Recent progress on transforming crude glycerol into high value chemicals: a critical review. ISSN: 1759-7269.Google Scholar
  10. Chynoweth, D., Owens, J., & Legrand, R. (2001). Renewable methane from anaerobic digestion of biomass. Renewable Energy, 22, 1–8.CrossRefGoogle Scholar
  11. Eriksson, M. E., Israelsson, M., Olsson, O., & Moritz, T. (2000). Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nature Biotechnology, 18, 784–788.CrossRefGoogle Scholar
  12. Goyal, H., Seal, D, & Saxena, R. (2008). Bio-fuels from thermochemical conversion of renewable resources: A review. Renewable and Sustainable Energy Reviews, 12(2), 504–517.Google Scholar
  13. Hashimoto, K., Yamasaki, M., Fujimuram, K., Matsui, T., Izumiya, K., Komori, M., et al. (1999). Global CO2 recycling-novel materials and prospect for prevention of global warming and abundant energy supply. Materials Science and Engineering: A, 267, 200–206.CrossRefGoogle Scholar
  14. Heaton, E., Voigt, T., & Long, S. P. (2004). A quantitative review comparing the yields of two candidate C4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass and Bioenergy, 27, 21–30.CrossRefGoogle Scholar
  15. Hu, W. J., Harding, S. A., Lung, J., Popko, J. L., Ralph, J., Stokke, D. D., et al. (1999). Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nature Biotechnology, 17, 808–812.CrossRefGoogle Scholar
  16. International Energy Agency (IEA). (2004). Biofuels for transport: An international perspective. 9, rue de la Fédération, 75739 Paris, cedex 15, France. www.iea.org.
  17. Jeffries, T. W., & Jin, Y. S. (2000). Ethanol and thermotolerance in the bioconversion of xylose by yeasts. Advances in Applied Microbiology 47, 222–268.Google Scholar
  18. Khaled, D. El., Novas, N., Gázquez, J. A., García, R. M., & Agugliaro, F. M. (2016). Alcohols and alcohols mixtures as liquid biofuels: A review of dielectric properties. Renewable and Sustainable Energy Reviews, 66, 556–571.CrossRefGoogle Scholar
  19. Kim, H. J., Kang, B. S., Kim, M. J., Park, Y. M., Kim, D. K., Lee, J. S., et al. (2004). Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst. Catalysis Today, 93, 315–320.CrossRefGoogle Scholar
  20. Kim, G. V., Choi, W. Y., Kang, D. H., Lee, S. Y., & Lee H. Y. (2014a). Enhancement of biodiesel production from marine alga, Scenedesmus sp. through in situ transesterification process associated with acidic catalyst. BioMed Research International 391542, 1–12.  https://doi.org/10.1155/2014/391542.
  21. Koh, M. Y., & Ghazi, T. I. M. (2011). A review of biodiesel production from Jatrophacurcas L. oil. Renewable and Sustainable Energy Reviews, 15(5), 2240–2251.Google Scholar
  22. Kuhar, P. S. (2014). Characterization of genetically modified high biomass producing tobacco plant. Biological Systems Engineering–Dissertations, Theses, and Student Research, 44.Google Scholar
  23. Lin, Y., & Tanaka, S. (2006). Ethanol fermentation from biomass resources: Current state and prospects. Applied Microbiology and Biotechnology, 69(6), 627–642.CrossRefGoogle Scholar
  24. Lin, Y., Zhang, W., Li, W., Sakakibara, K., Tanaka, S., & Kong, H. (2012). Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742. Biomass and Bioenergy, 47, 395–401.CrossRefGoogle Scholar
  25. Lynd, L. R. (1996). Overview and evaluation of fuel ethanol from cellulosic biomass: Technology, economics, the environment, and policy. Annual Review of Energy and the Environment, 21, 403–465.CrossRefGoogle Scholar
  26. Muthukumar, A., Elayaraja, S., Ajithkumar, T. T., Kumaresan, S., & Balasubramanian, T. (2012). Biodiesel production from marine microalgae Chlorella marina and Nannochloropsissalina. Journal of Petroleum Technology and Alternative Fuels, 3, 58–62.Google Scholar
  27. Nautiyal, P., Subramanian, K. A., & Dastidar, M. G. (2014). Kinetic and thermodynamic studies on biodiesel production from Spirulina platensis algae biomass using single stage extraction-transesterification process. Fuel, 135, 228–234.CrossRefGoogle Scholar
  28. Nigam, P. S., & Singh, A. (2011). Production of liquid biofuels from renewable resources. Progress in Energy and Combustion Science, 37, 52–68.CrossRefGoogle Scholar
  29. Pace, W. E., Westphal, W. B., & Goldblith, S. A. (1968). Dielectric properties of commercial cooking oils. Journal of Food Science, 33, 30–36.CrossRefGoogle Scholar
  30. Pandey, A., & Press, C. (2009). Handbook of plant-based biofuels. Boca Raton: CRC Press.Google Scholar
  31. Peña, N., & Sheehan, J. (2007). Biofuels for transportation. CDM Investment Newsletter, 3.Google Scholar
  32. Persson, I., Tjerneld, F., & Hahn-Hagerdal, B. (1991). Fungal cellulolytic enzyme production: a review. Process of Biochemistry, 26, 65–74.CrossRefGoogle Scholar
  33. Praveen Kumar, R., Bharathiraja, B., Pragadeesh, K., Chozhavendhan, S., & Johnson, A. W. (2014). Utilization of cassava sago waste for bioethanol production by co- fermentation of by starch degrading bacteria and Saccharomyces cerevisiae. Asian Journal of Microbial Biotechnology & Environmental Sciences, 3, 1–6.Google Scholar
  34. REN21. (2013). Renewables 2013—Global status report. REN21 Secretariat, Paris.Google Scholar
  35. Sharma, A., Pareek, V., & Zhang, D. (2015). Biomass pyrolysis—a review of modelling, process parameters and catalytic studies. Renewable and Sustainable Energy Reviews, 50, 1081–1096.CrossRefGoogle Scholar
  36. Sheehan, J., Cambreco, V., Duffield, J., Garboski, M., & Shapouri, H. (1998). An overview of biodiesel and petroleum diesel life cycles. US Department of Agriculture and Energy, 1–35.Google Scholar
  37. Sims, R. E. H., Mabee, W., Saddler, J. N., & Taylor, M. (2010). An overview of second generation biofuel technologies. Bioresource Technology, 101, 1570–1580.CrossRefGoogle Scholar
  38. Singh, A., Pant, D., Korres, N. E., Nizami, A.-S., Prasad, S., & Murphy, J. D. (2010). Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: Challenges and perspectives. Bioresource Technology, 101, 5003–5012.CrossRefGoogle Scholar
  39. Spath, P. L., Dayton, D. C. (2003). Preliminary screening-technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived syngas (Department of Energy, USA). USA: National Renewable Energy Laboratory, Colorado, USA Technical Report No.: NREL/TP510-34929.Google Scholar
  40. Speight, J. G. (2010). The biofuels handbook Royal Society of Chemistry, Great Britain.Google Scholar
  41. Sun, & Cheng. (2002). The use of dilute acid has been successfully developed for the pretreatment of lignocellulose.Google Scholar
  42. Susilaningsih, D., Djohan, A. C., Widyaningrum, D. N., & Anam, K. (2009). Biodiesel from indigenous Indonesian marine microalgae Nanochloropsis sp. Journal of Biotechnology Res. Trop. Reg., 2, 1–4.Google Scholar
  43. Zabed, H., Faruq, G., Sahu, J. N., Azirun, M. S., Hasim, E., & Boyce, A. N. (2014). Bioethanol production from fermentable sugar juice. Scientific World Journal, 2014, 1–11.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • G. Karthiga Devi
    • 1
    Email author
  • S. Chozhavendhan
    • 2
  • J. Jayamuthunagai
    • 3
  • B. Bharathiraja
    • 4
  • R. Praveen kumar
    • 5
  1. 1.Saveetha School of EngineeringChennaiIndia
  2. 2.Vivekanandha College of Engineering for WomenTiruchengode, ChennaiIndia
  3. 3.Centre for BiotechnologyAnna UniversityChennaiIndia
  4. 4.Vel Tech High Tech Dr Rangarajan Dr Sakunthala Engineering College AvadiChennaiIndia
  5. 5.Arunai Engineering CollegeTiruvannamalaiIndia

Personalised recommendations