Advertisement

Prospects and Potential of Calophyllum Inophyllum as a Renewable Feedstock for Biodiesel Production

  • S. Niju
  • M. Balajii
  • G. Vishnupriya
  • K. M. Meera Sheriffa Begum
  • N. AnantharamanEmail author
Chapter

Abstract

Biodiesel, the alkyl esters of fatty acid is acquiring enormous attention in recent years and has been considered as one of the most promising renewable and sustainable energy resources to replace existing petroleum-derived diesel fuel. Among the various technologies available, the transesterification process exhibits huge potential for biodiesel production. Generally, different types of non-edible oils were utilized as feedstock to make the biodiesel production process more efficient and cost-effective. Hence, this review presents the potential of underutilized Calophyllum inophyllum oil (CIO) as a feedstock for biodiesel production. Moreover, the current study provides a detailed report about C. inophyllum oil and its physico-chemical properties. Furthermore, a detailed review of various biodiesel production techniques particularly transesterification process was presented. From the overall observations, it can be concluded that the non-edible C. inophyllum oil could be a potential and economical feedstock for biodiesel production.

Keywords

Calophyllum inophyllum oil Esterification Transesterification Biodiesel 

References

  1. Atadashi, I. M., Aroua, M. K., Abdul Aziz, A. R., & Sulaiman, N. M. N. (2012). Production of biodiesel using high free fatty acid feedstocks. Renewable and Sustainable Energy Reviews, 16(5), 3275–3285.  https://doi.org/10.1016/j.rser.2012.02.063.CrossRefGoogle Scholar
  2. Ayodele, Olubunmi O., & Folasegun a. Dawodu. 2014a. Conversion of Calophyllum inophyllum oil with a high free fatty acid content to biodiesel using a starch-derived catalyst. Energy Technology 2 (11): 912–20.  https://doi.org/10.1002/ente.201402070.
  3. Ayodele, O. O., & Dawodu, F. A. (2014b). Production of biodiesel from Calophyllum inophyllum oil using a cellulose-derived catalyst. Biomass and Bioenergy 70: 239–48.  https://doi.org/10.1016/j.biombioe.2014.08.028.
  4. Azad, A. K., Rasul, M. G., Khan, M. M. K., Sharma, S. C., Mofijur, M., & Bhuiya, M. M. K. (2016). Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A non-edible oil sources in Australia. Renewable and Sustainable Energy Reviews, 61, 302–318.  https://doi.org/10.1016/j.rser.2016.04.013.CrossRefGoogle Scholar
  5. Balaji, G., & Cheralathan, M. (2013). Potential of various sources for biodiesel production. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 35(9), 831–839.  https://doi.org/10.1080/15567036.2011.594856.CrossRefGoogle Scholar
  6. Baskar, G., & Aiswarya, R. (2016). Trends in catalytic production of biodiesel from various feedstocks. Renewable and Sustainable Energy Reviews, 57, 496–504.  https://doi.org/10.1016/j.rser.2015.12.101.CrossRefGoogle Scholar
  7. Bhuiya, M. M. K., Rasul, M. G., Khan, M. M. K., Ashwath, N., & Azad, A. K. (2016). Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 Selection of feedstocks, oil extraction techniques and conversion technologies. Renewable and Sustainable Energy Reviews, 55, 1109–1128.  https://doi.org/10.1016/j.rser.2015.04.163.CrossRefGoogle Scholar
  8. Bykalos. (2016). Tamanu. Retrieved May 20, 2018, from http://www.bykalos.com/kupas-tamanu/.
  9. C.P.R. Environmental Education Centre, Chennai. (2018). Alexandrian Laurel.Google Scholar
  10. Chavan, S. B., Kumbhar, R. R., & Deshmukh, R. B. (2013). Callophyllum inophyllum Linn (“ Honne “) oil, a source for biodiesel production. Research Journal of Chemical Sciences Research Journal Chemical Sciences 3 (11): 2231–2606.Google Scholar
  11. Damanik, N., Ong, H. C., Chong, W. T., & Silitonga, A. S. (2017). Biodiesel production from Calophyllum inophyllum-palm mixed oil. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 39(12), 1283–1289.  https://doi.org/10.1080/15567036.2017.1324537.CrossRefGoogle Scholar
  12. Deepalakshmi, S., Sivalingam, A., Thirumarimurugan, M., Sivakumar, P., & Ashokkumar, V. (2015). Optimization of biodiesel synthesis from Calophyllum inophyllum. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 37(23), 2601–2608.  https://doi.org/10.1080/15567036.2015.1007403.CrossRefGoogle Scholar
  13. Demirbas, A. (2010). Biodiesel for future transportation energy needs. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 32(16), 1490–1508.  https://doi.org/10.1080/15567030903078335.CrossRefGoogle Scholar
  14. Demirbas, A. (2008). Biodiesel : A realistic fuel alternative for diesel engines. Springer.Google Scholar
  15. Dinesh, K., Tamilvanan, A., Vaishnavi, S., Gopinath, M., & Raj Mohan, K. S. (2016). Biodiesel production using Calophyllum inophyllum (Tamanu) seed oil and its compatibility test in a ci engine. Biofuels, 7269(June), 1–7.  https://doi.org/10.1080/17597269.2016.1187543.CrossRefGoogle Scholar
  16. Elangovan, T., Anbarasu, G., & Jeryrajkumar, L. (2016). Development of Calophyllum inophyllum biodiesel and analysis of its properties at different blends. International Journal of ChemTech Research, 9(4), 220–229.Google Scholar
  17. He, Q. (Sophia), McNutt, J., & Yang, J. (2017). Utilization of the residual glycerol from biodiesel production for renewable energy generation. Renewable and Sustainable Energy Reviews 71 (2016): 63–76.  https://doi.org/10.1016/j.rser.2016.12.110.
  18. Jahirul, M. I., Koh, W., Brown, R. J., Senadeera, W., O’Hara, I., & Moghaddam, L. (2014). Biodiesel production from non-edible beauty leaf (Calophyllum inophyllum) oil: Process optimization using response surface methodology (RSM). Energies, 7(8), 5317–5331.  https://doi.org/10.3390/en7085317.CrossRefGoogle Scholar
  19. Jain, M., Chandrakant, U., Orsat, V., & Raghavan, V. (2018). A review on assessment of biodiesel production methodologies from Calophyllum inophyllum seed oil. Industrial Crops and Products, 114(2017), 28–44.  https://doi.org/10.1016/j.indcrop.2018.01.051.CrossRefGoogle Scholar
  20. Kirubakaran, M., & Arul Mozhi Selvan, V. (2018). A comprehensive review of low cost biodiesel production from waste chicken fat. Renewable and Sustainable Energy Reviews 82 (July 2017): 390–401.  https://doi.org/10.1016/j.rser.2017.09.039.
  21. Kshirsagar, C. M., & Anand, R. (2017). Homogeneous catalysed biodiesel synthesis from Alexandrian laurel (Calophyllum inophyllum L.) kernel oil using ortho-phosphoric acid as a pretreatment catalyst. International Journal of Green Energy, 14(9), 754–764.  https://doi.org/10.1080/15435075.2017.1328421.CrossRefGoogle Scholar
  22. Marso, T. M. M., Kalpage, C. S., & Udugala-Ganehenege, M. Y. (2017). Metal modified graphene oxide composite catalyst for the production of biodiesel via pre-esterification of Calophyllum inophyllum oil. Fuel, 199, 47–64.  https://doi.org/10.1016/j.fuel.2017.01.004.CrossRefGoogle Scholar
  23. Mat, Y., Mohd, H., Rizalman, M., Najafi, G. Obed Majeed Ali, Yusop, A. F., & Ali, M. H. (2017). Potentials of palm oil as new feedstock oil for a global alternative fuel: a review. Renewable and Sustainable Energy Reviews 79 (April 2016): 1034–49.  https://doi.org/10.1016/j.rser.2017.05.186.
  24. Mofijur, M., Masjuki, H. H., Kalam, M. A., Ashrafur Rahman, S. M., & Mahmudul, H. M. (2015). Energy scenario and biofuel policies and targets in ASEAN countries. Renewable and Sustainable Energy Reviews, 46, 51–61.  https://doi.org/10.1016/j.rser.2015.02.020.CrossRefGoogle Scholar
  25. Mosarof, M. H., Kalam, M. A., Masjuki, H. H., Abdullah Alabdulkarem, Ashraful, A. M., Arslan, A., Rashedul, H. K., & Monirul, I. M. (2016). Optimization of performance, emission, friction and wear characteristics of palm and Calophyllum inophyllum biodiesel blends. Energy Conversion and Management 118: 119–34.  https://doi.org/10.1016/j.enconman.2016.03.081.
  26. Niju, S., Begum, M. M. M. S., & Anantharaman, N. (2014). Modification of egg shell and its application in biodiesel production. Journal of Saudi Chemical Society, 18(5), 702–706.  https://doi.org/10.1016/j.jscs.2014.02.010.CrossRefGoogle Scholar
  27. NITI Aayog, GoI. (2017). Draft National Energy Policy-India. NITI Aayog, Government of India, 1–106. http://niti.gov.in/writereaddata/files/new_initiatives/NEP-ID_27.06.2017.pdf.
  28. Ong, H. C., Mahlia, T. M. I., Masjuki, H. H., & Norhasyima, R. S. (2011). Comparison of palm oil, Jatropha curcas and Calophyllum inophyllum for biodiesel: A review. Renewable and Sustainable Energy Reviews, 15(8), 3501–3515.  https://doi.org/10.1016/j.rser.2011.05.005.CrossRefGoogle Scholar
  29. Ong, H. C., Masjuki, H. H., Mahlia, T. M. I., Silitonga, A. S., Chong, W. T., & Leong, K. Y. (2014a). Optimization of biodiesel production and engine performance from high free fatty acid Calophyllum inophyllum oil in ci diesel engine. Energy Conversion and Management 81 (May 2014): 30–40.  https://doi.org/10.1016/j.enconman.2014.01.065.
  30. Ong, H. C., Masjuki, H. H., Mahlia, T. M. I., Silitonga, A. S., Chong, W. T., & Yusaf, T. (2014b). Engine performance and emissions using Jatropha curcas, Ceiba pentandra and Calophyllum inophyllum biodiesel in a CI diesel engine. Energy, 69, 427–445.  https://doi.org/10.1016/j.energy.2014.03.035.CrossRefGoogle Scholar
  31. Prabakaran, K., John Britto, S. (2012). Biology, agroforestry and medicinal value of Calophyllum inophyllum L. (clusiacaea): A review. International Journal of Natural Products Research 1 (2): 24–33.Google Scholar
  32. Pullen, J., & Saeed, K. (2012). An overview of biodiesel oxidation stability. Renewable and Sustainable Energy Reviews, 16(8), 5924–5950.  https://doi.org/10.1016/j.rser.2012.06.024.CrossRefGoogle Scholar
  33. Rahman, S. M., Ashrafur, H. H., Masjuki, M. A., Kalam, M. J., Abedin, A. Sanjid, & Sajjad, H. (2013). Production of palm and Calophyllum inophyllum based biodiesel and investigation of blend performance and exhaust emission in an unmodified diesel engine at high idling conditions. Energy Conversion and Management.  https://doi.org/10.1016/j.enconman.2013.07.061.CrossRefGoogle Scholar
  34. Rizwanul Fattah, I. M., Kalam, M. A., Masjuki, H. H., & Wakil, M. A. (2014a). Biodiesel production, characterization, engine performance, and emission characteristics of malaysian Alexandrian laurel oil. RSC Adv., 4(34), 17787–17796.  https://doi.org/10.1039/C3RA47954D.CrossRefGoogle Scholar
  35. Rizwanul Fattah, I. M., Masjuki, H. H., Kalam, M. A., Wakil, M. A., Ashraful, A. M., & Shahir, S. A. (2014b). Experimental investigation of performance and regulated emissions of a diesel engine with Calophyllum inophyllum biodiesel blends accompanied by oxidation inhibitors. Energy Conversion and Management, 83, 232–240.  https://doi.org/10.1016/j.enconman.2014.03.069.CrossRefGoogle Scholar
  36. Sahoo, P. K., Das, L. M., Babu, M. K. G., & Naik, S. N. (2007). Biodiesel development from high acid value polanga seed oil and performance evaluation in a CI engine. Fuel, 86(3), 448–454.  https://doi.org/10.1016/j.fuel.2006.07.025.CrossRefGoogle Scholar
  37. SathyaSelvabala, V., Selvaraj, D. K., Kalimuthu, J., Periyaraman, P. M., & Subramanian, S. (2011). Two-step biodiesel production from Calophyllum inophyllum oil: Optimization of modified β-zeolite catalyzed pre-treatment. Bioresource Technology, 102(2), 1066–1072.  https://doi.org/10.1016/j.biortech.2010.08.052.CrossRefPubMedGoogle Scholar
  38. Shah, S. H., Raja, I. A., Rizwan, M., Rashid, N., Mahmood, Q., Shah, F. A., & Pervez, A. (2018). Potential of microalgal biodiesel production and its sustainability perspectives in Pakistan. Renewable and Sustainable Energy Reviews 81 (June 2016): 76–92.  https://doi.org/10.1016/j.rser.2017.07.044.
  39. Silitonga, A. S., Mahlia, T. M. I., Hwai Chyuan Ong, T. M. I. Riayatsyah, F. K., Husin Ibrahim, S. D., & Gumilang, D. (2017). A comparative study of biodiesel production methods for Reutealis trisperma biodiesel. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 39 (20): 2006–14.  https://doi.org/10.1080/15567036.2017.1399174.
  40. Silitonga, A. S., Ong, H. C., Mahlia, T. M. I., Masjuki, H. H., & Chong, W. T. (2014). Biodiesel conversion from high FFA crude Jatropha curcas, Calophyllum inophyllum and Ceiba pentandra oil. Energy Procedia, 61, 480–483.  https://doi.org/10.1016/j.egypro.2014.11.1153.CrossRefGoogle Scholar
  41. Statista. (2016). Worldwide Leading Biodiesel Producers. Retrieved May 20, 2018, from https://www.statista.com/statistics/271472/biodiesel-production-in-selected-countries/.
  42. Verma, P., & Sharma, M. P. (2016). Review of process parameters for biodiesel production from different feedstocks. Renewable and Sustainable Energy Reviews, 62, 1063–1071.  https://doi.org/10.1016/j.rser.2016.04.054.
  43. Venkanna, B. K., & Venkataramana Reddy, C. (2009). Biodiesel production and optimization from Calophyllum inophyllum Linn oil (Honne oil)—A three stage method. Bioresource Technology, 100(21), 5122–5125.  https://doi.org/10.1016/j.biortech.2009.05.023.CrossRefPubMedGoogle Scholar
  44. Yadav, A. K., Vinay, & Bhupender, S. (2018). Optimization of biodiesel production from Annona squamosa seed oil using response surface methodology and its characterization. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 40 (9): 1051–59.  https://doi.org/10.1080/15567036.2018.1468516.
  45. Zhang, Y., & Niu, C. (2018). Toward estimation of biodiesel production from castor oil using ANN. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 40(12), 1469–1476.  https://doi.org/10.1080/15567036.2018.1477873.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • S. Niju
    • 1
  • M. Balajii
    • 1
  • G. Vishnupriya
    • 1
  • K. M. Meera Sheriffa Begum
    • 2
  • N. Anantharaman
    • 2
    Email author
  1. 1.Department of BiotechnologyPSG College of TechnologyCoimbatoreIndia
  2. 2.Department of Chemical EngineeringNational Institute of TechnologyTiruchirappalliIndia

Personalised recommendations