Lipase-Catalyzed Synthesis of Caffeic Acid Bornyl Ester

  • A. H. KamaruddinEmail author
  • N. N. Mohd Yusof
  • F. N. Gonawan
  • N. I. Basir


Caffeic acid bornyl ester (CABE) is a rare caffeic acid derivative and natural product with significant biological and pharmacological properties. Among the important properties are anti-inflammatory, antibacterial, anticancer, ability to inhibit HIV integrase, ability to induce apoptosis in breast cancer, and ability to treat leishmaniasis. CABE or also known as bornyl caffeate was initially extracted and isolated from plants. Afterward, several efforts were carried out to synthesize CABE using chemical extraction methods. However, the use of traditional chemical extraction and chemical synthesis method to produce CABE are uneconomical, inefficient, and toxic to human and environment. Enzymatic-catalyzed synthesis is a promising green reaction pathway for the synthesis of CABE and the most commonly used enzyme in the synthesis of ester is lipase. Lipases catalyze most of ester synthesis reactions such as esterification, transesterification and interesterification reactions in nonaqueous solvents. The versatility of lipases reaction in nonaqueous media has made them among the most important and potential biocatalysts for various industrial applications. In this chapter, the literatures related to the topic are reviewed starting with the importance of natural products followed by the introduction of CABE potential as natural product and how it is currently being synthesized. Then, a brief outline of enzymatic-catalyzed synthesis as a promising alternative method is emphasized. Subsequently, lipase-catalyzed synthesis of CABE was developed based on several related studies highlighted followed by the study on the effect of reaction parameters and the reaction mechanism.


Caffeic acid bornyl ester (CABE) Green reaction Lipase Transesterification 



The authors would like to acknowledge Universiti Sains Malaysia for funding the current study through the Research University Grant Scheme (1001/PJKIMIA/814226) and providing research facilities for the research project.


  1. Almeida, J. R. G. D. S., Souza, G. R., Silva, J. C., Saraiva, S. R. G. D. L., Junior, R. G. D. O., Quintans, J. D. S. S., Barreto, R. D. S. S., Bonjardim, L. R., Cavalcanti, S. C. D. H., & Junior, L. J. Q. (2013). Borneol, a bicyclic monoterpene alcohol, reduces nociceptive behavior and inflammatory response in Mice. The Scientific World Journal, 2013.Google Scholar
  2. Amirkia, V., & Heinrich, M. (2015). Natural products and drug discovery: A survey of stakeholders in industry and academia. Frontiers in Pharmacology, 6(OCT), 1–8.Google Scholar
  3. Bezborodov, A. M., & Zagustina, N. A. (2016). Enzymatic biocatalysis in chemical synthesis of pharmaceuticals (review). Applied Biochemistry and Microbiology, 52(3), 237–249.CrossRefGoogle Scholar
  4. Bhullar, K. S., Lassalle-Claux, G., Touaibia, M., & Vasantha Rupasinghe, H. P. (2014). Antihypertensive effect of caffeic acid and its analogs through dual renin-angiotensin-aldosterone system inhibition. European Journal of Pharmacology, 730(1), 125–132.CrossRefGoogle Scholar
  5. Bornscheuer, U. T., Huisman, G. W., Kazlauskas, R. J., Lutz, S., Moore, J. C., & Robins, K. (2012). Engineering the third wave of biocatalysis. Nature, 485(7397), 185–194.CrossRefGoogle Scholar
  6. Boselli, E., Bendia, E., Di Lecce, G., Benedetti, A., & Frega, N. G. (2009). Ethyl caffeate from Verdicchio wine: Chromatographic purification and in vivo evaluation of its antifibrotic activity. Journal of Separation Science, 32(21), 3585–3590.CrossRefGoogle Scholar
  7. Butler, M. S. (2005). Natural products to drugs: Natural product derived compounds in clinical trials. Natural Product Reports, 22(2), 162–195.CrossRefGoogle Scholar
  8. Chapman, J., Ismail, A. E., & Dinu, C. Z. (2018). Industrial applications of enzymes: Recent advances, techniques and outlooks. Catalysts, 8(6), 238.CrossRefGoogle Scholar
  9. Chen, Y. C., Liao, C. H., & Chen, I. S. (2007). Lignans, an amide and anti-platelet activities from Piper philippinum. Phytochemistry, 68, 2101–2111.CrossRefGoogle Scholar
  10. Chowdary, G. V., & Prapulla, S. G. (2005). Kinetic study on lipase-catalyzed esterification in organic solvents. Indian Journal of Chemistry—Section B Organic and Medicinal Chemistry, 44(11), 2322–2327.Google Scholar
  11. Chung, T. W., Moon, S. K., Chang, Y. C., Ko, J. H., Lee, Y. C., Cho, G., et al. (2004). Novel and therapeutic effect of caffeic acid and caffeic acid phenyl ester on hepatocarcinoma cells: Complete regression of hepatoma growth and metastasis by dual mechanism. The FASEB Journal, 18, 1670–1681.CrossRefGoogle Scholar
  12. Copeland, R. A. (2000). Enzymes: A practical introduction to structure, mechanism, and data analysis (2nd ed.). New York: Wiley.CrossRefGoogle Scholar
  13. Cragg, G. M., & Newman, D. J. (2005). Biodiversity: A continuing source of novel drug leads. Pure and Applied Chemistry, 77(1), 7–24.CrossRefGoogle Scholar
  14. David, B., Wolfender, J.-L., & Dias, D. A. (2014). The pharmaceutical industry and natural products: Historical status and new trends. Phytochemistry Reviews, 14(2), 299–315.CrossRefGoogle Scholar
  15. Dikshith, T. S. S. (2008). Safe use of chemicals: A practical guide. New York: CRC Press Taylor & Francis Group.CrossRefGoogle Scholar
  16. Erdemli, H., Akyol, S., Armutcu, F., & Akyol, O. (2015). Antiviral properties of caffeic acid phenethyl ester and its potential application. Journal of Intercultural Ethnopharmacology, 4(4), 344–347.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Frimpong, I. K., Nagre, R. D., & Nti, L. (2015). The effect of water sorbent on lipase-catalysed esterification of fatty acid. Science and Technology, 5(1), 15–19.Google Scholar
  18. Garlapati, V. K., Kant, R., Kumari, A., Mahapatra, P., Das, P., & Banerjee, R. (2013). Lipase mediated transesterification of Simarouba glauca oil: A new feedstock for biodiesel production. Sustainable Chemical Processes, 1(1), 11.CrossRefGoogle Scholar
  19. Glaser, J., Schultheis, M., Hazra, S., Hazra, B., Moll, H., Schurigt, U., et al. (2014). Antileishmanial lead structures from nature: Analysis of structure-activity relationships of a compound library derived from caffeic acid bornyl ester. Molecules, 19(2), 1394–1410.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Goodburn, K. (2001). EU food law: A practical guide. Cambridge, England: Woodhead Publishing Limited.CrossRefGoogle Scholar
  21. Groussin, A. L., & Antoniotti, S. (2012). Valuable chemicals by the enzymatic modification of molecule of natural origin: Terpenoids, steroids, phenolic and related compounds. Bioresources Technology, 115(2012), 237–243.CrossRefGoogle Scholar
  22. Gu, S., Wang, J., Wei, X., Cui, H., Wu, X., & Wu, F. (2014). Enhancement of lipase-catalyzed synthesis of caffeic acid phenethyl ester in ionic liquid with DMSO co-solvent. Chinese Journal of Chemical Engineering, 22(11), 1314–1321.CrossRefGoogle Scholar
  23. Gulcin, I. (2006). Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology, 217(2–3), 213–220.Google Scholar
  24. Gupta, M. N. (1992). Enzyme function in organic solvents. European Journal of Biochemistry, 203(1–2), 25–32.Google Scholar
  25. Ha, S. H., Anh, T. Van, Lee, S. H., & Koo, Y. (2012). Effect of ionic liquids on enzymatic synthesis of caffeic acid phenethyl ester. Bioprocess and Biosystems Engineering, 35(1–2), 235–240.CrossRefGoogle Scholar
  26. Jun, W., Jing, L. I., Leixia, Z., & Shuangshuang, G. U. (2013). Lipase-catalyzed synthesis of caffeic acid phenethyl ester in ionic Liquids: Effect of specific ions and reaction parameters. Chinese Journal of Chemical Engineering, 21(12), 1376–1385.CrossRefGoogle Scholar
  27. Kabera, J. N., Semana, E., Mussa, A. R., & He, X. (2014). Plant secondary metabolites: Biosynthesis, classification, function and pharmacological properties. Journal of Pharmacy and Pharmacology, 2, 377–392.Google Scholar
  28. Kang, N. J., Lee, K. W., Shin, B. J., Jung, S. K., Hwang, M. K., Bode, A. M., et al. (2009). Caffeic acid, a phenolic phytochemical in coffee, directly inhibits Fyn kinase activity and UVB-induced COX-2 expression. Carcinogenesis, 30(2), 321–330.CrossRefGoogle Scholar
  29. Krishna, S. H., & Karanth, N. G. (2017). Lipases and lipase-catalyzed esterification reactions in nonaqueous media, 4940(November).Google Scholar
  30. Kumar, A., Dhar, K., Kanwar, S. S., & Arora, P. K. (2016). Lipase catalysis in organic solvents: Advantages and applications. Biological Procedures Online, 18(1), 1–11.CrossRefGoogle Scholar
  31. Kumar, M. S., Kumar, S., & Raja, B. (2010). Antihypertensive and antioxidant potential of borneol-A natural terpene in L-NAME—Induced hypertensive rats. International Journal of Pharmaceutical & Biological Archives, 1(3), 271–279.Google Scholar
  32. Leblanc, L. M., Pare, A. F., Jean-françois, J., Hebert, M. J. G., Surette, M. E., & Touaibia, M. (2012). Synthesis and antiradical/antioxidant activities of caffeic acid phenethyl ester and its related propionic, acetic, and benzoic acid analogues. Molecules, 17, 14637–14650.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Liao, H.-F., Chen, Y.-Y., Liu, J.-J., Hsu, M.-L., Shieh, H.-J., Liao, H.-J., et al. (2003). Inhibitory effect of caffeic acid phenethyl ester on angiogenesis, tumor invasion, and metastasis. Journal of Agricultural and Food Chemistry, 51(27), 7907–7912.CrossRefGoogle Scholar
  34. Liu, Y., Lotero, E., & Jr, J. G. Goodwin. (2006). Effect of carbon chain length on esterification of carboxylic acids with methanol using acid catalysis. Journal of Catalysis, 243, 221–228.Google Scholar
  35. Lopez-Giraldo, L. J., Laguerre, M., Lecomte, J., Figueroa-Espinoza, M. C., Barouh, N., Barea, B., et al. (2007). Lipase-catalyzed synthesis of chlorogenate fatty esters in solvent-free medium. Enzyme and Microbial Technology, 41, 721–726.CrossRefGoogle Scholar
  36. Maldonado, E., Ramírez-Apan, M., & Perez-Castorena, A. L. (1998). Anti- inflammatory activity of phenyl propanoids from Coreopsis mutica var. mutica. Planta Medica, 64, 660–661.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Marangoni, A. G. (2003). Enzyme kinetics: A modern approach. New Jersey: Wiley.Google Scholar
  38. Martin, Y. C., Kofron, J. L., Traphagen, L. M. (2002). Do structurally similar molecules have similar biological activity? Journal of Medicinal Chemistry, 45(19), 4350–4358.Google Scholar
  39. Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuente, R. (2007). Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology, 40(6), 1451–1463.CrossRefGoogle Scholar
  40. Murtaza, G., Karim, S., Akram, M. R., Khan, S. A., Azhar, S., Mumtaz, A., & Bin Asad, M. H. H. (2014). Caffeic acid phenethyl ester and therapeutic potentials. BioMed Research International, 2014.Google Scholar
  41. Newman, D. J. (2016). Developing natural product drugs: Supply problems and how they have been overcome. Pharmacology & Therapeutics, 162, 1–9.CrossRefGoogle Scholar
  42. Newman, D. J., & Cragg, G. M. (2012). Natural products as sources of new drugs over the 30 years from 1981 to 2010. Journal of Natural Products, 75(3), 311–335.Google Scholar
  43. Ogungbe, I. V., Crouch, R. A., Haber, W. A., & Setzer, W. N. (2010). Phytochemical investigation of verbesina turbacensis kunth: Trypanosome cysteine protease inhibition by (–)-bornyl esters. Natural Product Communications, 5, 1161–1166.CrossRefGoogle Scholar
  44. Ozturk, G., Ginis, Z., & Akyol, S. (2012). The anticancer mechanism of caffeic acid phenethyl ester (CAPE): Review of melanomas, lung and prostate cancers. European Review for Medical and Pharmacological Sciences, 16(15), 2064–2068.PubMedGoogle Scholar
  45. Pang, N., Gu, S. S., Wang, J., Cui, H. S., Wang, F. Q., Liu, X., et al. (2013). A novel chemoenzymatic synthesis of propyl caffeate using lipase-catalyzed transesterification in ionic liquid. Bioresource Technology, 139, 337–342.CrossRefGoogle Scholar
  46. Raita, M., Kiatkittipong, W., Laosiripojana, N., & Champreda, V. (2015). Kinetic study on esterification of palmitic acid catalyzed by glycine-based crosslinked protein coated microcrystalline lipase. Chemical Engineering Journal, 278, 19–23.CrossRefGoogle Scholar
  47. Rajendran, A., Palanisamy, A., & Thangavelu, V. (2009). Lipase catalyzed ester synthesis for food processing industries. Brazilian Archives of Biology and Technology, 52, 207–219.CrossRefGoogle Scholar
  48. Rani, K. N. P., Neeharika, T. S. V. R., Kumar, T. P., Satyavathi, B., Sailu, C., & Prasad, R. B. N. (2015). Kinetics of enzymatic esterification of oleic acid and decanol for wax ester and evaluation of its physico-chemical properties. Journal of the Taiwan Institute of Chemical Engineers, 55, 12–16.CrossRefGoogle Scholar
  49. Saxena, R. K., Ghosh, P. K., Gupta, R., Sheba Davidson, W., Bradoo, S., & Gulati, R. (1999). Microbial lipases: Potential biocatalysts for the future industry. Current Science, 77(1), 101–105.Google Scholar
  50. Setzer, W. N., Setzer, M. C., Bates, R. B., Nakkiew, P., Jackes, B. R., & Chen, L. (1999). Antibacterial hydroxycinnamic esters from Piper caninum from Paluma, north Queensland, Australia. The crystal and molecular structure of (+)-bornyl coumarate. Planta Medica, 65, 747.Google Scholar
  51. Sroka, Z., & Cisowski, W. (2003). Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food and Chemical Toxicology, 41, 753–758.CrossRefGoogle Scholar
  52. Stergiou, P. Y., Foukis, A., Filippou, M., Koukouritaki, M., Parapouli, M., Theodorou, L. G., Hatziloukas, E., Afendra, A., Pandey, A., & Papamichael, E. M. (2013). Advances in lipase-catalyzed esterification reactions. Biotechnology Advances, 31(8), 1846–1859.Google Scholar
  53. Sumbita, G. (2014). Enzymatic bioconversion in non-conventional media. Research Journal of Chemical Sciences, 4(11), 103–116.Google Scholar
  54. Tan, Z., & Shahidi, F. (2012). A novel chemoenzymatic synthesis of phytosteryl caffeates and assessment of their antioxidant activity. Food Chemistry, 133(4), 1427–1434.CrossRefGoogle Scholar
  55. Thakur, S. (2012). Lipases, its sources, properties and applications: A review. International Journal of Scientific & Engineering Research, 3(7).Google Scholar
  56. Tsou, M. F., Hung, C. F., Lu, H. F., Wu, L. T., Chang, S. H., Chang, H. L., et al. (2000). Effects of caffeic acid, chlorogenic acid and ferulic acid on growth and arylamine N-acetyltransferase activity in Shigella sonnei (group D). Microbios, 101, 37–46.PubMedGoogle Scholar
  57. Wang, J., Gu, S. S., Cui, H. S., Wu, X. Y., & Wu, F. A. (2014). A novel continuous flow biosynthesis of caffeic acid phenethyl ester from alkyl caffeate and phenethanol in a packed bed microreactor. Bioresource Technology, 158, 39–47.CrossRefGoogle Scholar
  58. Wang, L., Hsu, K., Hsu, F., & Lin, S. (2008). Simultaneous determination of caffeic acid, ferulic acid and isoferulic acid in rabbit plasma by high performance liquid chromatography. Journal of Food and Drug Analysis, 16(1), 34–40.Google Scholar
  59. Whiteman, H. (2017). Drug resistance: WHO report ‘serious lack of new antibtiotics’. Retrieved from Feb 1, 2019 from
  60. Widjaja, A., Yeh, T.-H., & Ju, Y.-H. (2008). Enzymatic synthesis of caffeic acid phenethyl ester. Journal of the Chinese Institute of Chemical Engineers, 39, 413–418.CrossRefGoogle Scholar
  61. Xia, C., Li, H., & Hu, W. (2008). Synthesis of trans-caffeate analogues and their bioactivities against HIV-1 integrase and cancer cell lines. Bioorganic & Medicinal Chemistry Letters, 18, 6553–6557.CrossRefGoogle Scholar
  62. Yadav, G. D., & Lathi, P. S. (2005). Lipase catalyzed transesterification of methyl acetoacetate with n-butanol. Journal of Molecular Catalysis. B, Enzymatic, 32, 107–113.CrossRefGoogle Scholar
  63. Yadav, G. D., & Trivedi, A. H. (2003). Kinetic modeling of immobilized-lipase catalyzed transesterification of n-octanol with vinyl acetate in non-aqueous media. Enzyme and Microbial Technology, 32, 783–789.CrossRefGoogle Scholar
  64. Yahya, A. R. M., Anderson, W. A., & Moo-young, M. (1998). Ester synthesis in lipase-catalyzed reactions. Enzyme and Microbial Technology, 229, 438–450.CrossRefGoogle Scholar
  65. Yang, C., Pei, W., Zhao, J., Cheng, Y., Zheng, X., & Rong, J. (2014). Bornyl caffeate induces apoptosis in human breast cancer MCF-7 cells via the ROS- and JNK-mediated pathways. Acta Pharmacologica Sinica, 35(1), 113–123.CrossRefGoogle Scholar
  66. Zhang, P., Tang, Y., Li, N.-G., Zhu, Y., & Duan, J.-A. (2014). Bioactivity and chemical synthesis of caffeic acid phenethyl ester and its derivatives. Molecules (Basel, Switzerland), 19(10), 16458–16476.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • A. H. Kamaruddin
    • 1
    Email author
  • N. N. Mohd Yusof
    • 2
  • F. N. Gonawan
    • 1
  • N. I. Basir
    • 1
  1. 1.School of Chemical EngineeringUniversiti Sains MalaysiaPenangMalaysia
  2. 2.Faculty of Engineering Technology, Department of Chemical Engineering TechnologyUniversiti Malaysia PerlisPerlisMalaysia

Personalised recommendations