Role of White Biotechnology in 2G Biofuels: Biocatalytic Process Development for the Hydrolysis of Lignocellulosic Biomass

  • Uma AddepallyEmail author
  • Chiranjeevu Thulluri
  • Vani Gandham
  • Kiran Kumari Palety
  • Kanakaraju Yerra


In the commercial exploitation of lignocellulosics for biofuels and other value-added chemicals, the biomass is enzymatically degraded to C5 and C6 sugars for further processing to preferred products of choice. But the economics of bioprocessing of biomass is limited by the cost of biocatalysts employed for the hydrolysis of lignocellulosic polymer to sugar monomers besides a corollary of other factors. Therefore, commercialization of these biocatalytic processes still needs various refinements in the existing infrastructure of lignocellulosic biorefinery. This chapter brings together and discusses better strategies to advance the enzymatic hydrolysis, the characteristics of the components involved (substrate and catalysts), substrate–catalyst complex, and its influence on the overall saccharification performance. Further, it also discusses the diversity of microbial-derived cellulases and their synergism for the effective sugar recovery from cellulose.


Lignocellulose White biotechnology Enzymatic hydrolysis Fermentable sugars 2G biofuels 


  1. Acharya, S., & Chaudhary, A. (2012). Bioprospecting thermophiles for cellulase production: A review. Brazilian Journal of Microbiology, 43(3), 844–856.CrossRefGoogle Scholar
  2. Adebayo, E. A., & Martinez-Carrera, D. (2015). Oyster mushrooms(pleurotus) are useful for untilizing lignocellulosic biomass. African Journal of Biotechnology 14(1), 52–67.Google Scholar
  3. Asztalos, A., Daniels, M., Sethi, A., Shen, T., Langan, P., Redondo, A., & Gnanakaran, S. (2012). A coarse-grained model for synergistic action of multiple enzymes on cellulose. Journal of Biotechnology for Biofuels, 5(1), 1–55.Google Scholar
  4. Atalla, R. H., & Vanderhart, D. L. (1984). Native cellulose: A composite of two distinct crystalline forms. Journal of Science, 223(4633), 283–285.Google Scholar
  5. Balan, V. (2014). Current challenges in commercially producing biofuels from lignocellulosic biomass. Journal of ISRN Biotechnology, 1–31.Google Scholar
  6. Bayer, E. A., Shoham, Y., & Lamed, R. (2006) The cellulase decomposing bacteria and their enzyme systems. In A. Balowes, H. Trurer, M, Dworkin, W. Harder & K. H. Schleifer (Eds.), The Prokaryotes (2nd Edn., pp. 2:578–617, Vol. -I). Springer.Google Scholar
  7. Beckham, Gregg T., Dai, Ziyu, Matthews, James F., et al. (2012). Harnessing glycosylation to improve cellulase activity. Journal of Current Opinion in Biotechnology, 23(3), 338–345. Scholar
  8. Bisaria, V. S. (1998). Bioprocessing of agro-residues to value added products. In A. M. Martin (Ed.), Bioconversion of waste materials to industrial products (2nd ed., pp. 197–246). UK: Chapman & Hall.CrossRefGoogle Scholar
  9. Bon, E. P. S., & Ferrara, M. A. (2007). Bioethanol production via enzymatichydrolysis of cellulosic biomass on The role of agricultural biotechnologies for production of bioenergy in developing countries. In FAO seminar, Rome (pp. 1–11).Google Scholar
  10. Boraston, A. B., McLean, B. W., Kormos, J. M., et al. (1999). Carbohydrate-binding modules: diversity of structure and function. Journal of the Royal Society of Chemistry, 246, 202–211.Google Scholar
  11. Carpita, N., Tierney, M., & Campbell, M. (2001). Molecular biology of the plant cell wall: searching for the genes that define structure, architecture and dynamics. Journal of Plant Molecular Biology, 47, 1–5.CrossRefGoogle Scholar
  12. Chanzy, H., Imada, K., & Vuong, R. (1978). Electron diffraction from the primary wall of cotton fibers. Journal of Protoplasma 94(3–4), 299–306.Google Scholar
  13. Chanzy, H., Imada, K., Mollard, A., Vuong, R., & Barnoud, F. (1979). Crystallographic aspects of sub-elementary cellulose fibrils occurring in the wall of rose cells cultured in vitro. Journal of Protoplasma, 100(3–4), 303–316.CrossRefGoogle Scholar
  14. Charpentier, E., & Doudna, J. A. (2013). Biotechnology: Rewriting a genome. Journal of Nature 495(7439), 50.Google Scholar
  15. Collins, Tony, Gerday, Charles, & Feller, Georges. (2005). Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiology Reviews, 29(1), 3–23.CrossRefGoogle Scholar
  16. Ding, S. Y., & Himmel, M. E. (2006). The maize primary cell wall microfibril: A new model derived from direct visualization. Journal of Agricultural and Food Chemistry, 54, 597–606.CrossRefGoogle Scholar
  17. Dutta, K., Daverey, A., & Lin, J. G. (2014). Evolution retrospective for alternative fules:first to Fourth generation. Journal of Renewable Energy, 69, 114–122.CrossRefGoogle Scholar
  18. Ellila, S., Fonseca, L., Uchima, C., Cota, J., et al. (2017). Development of a low-cost cellulase production process using Trichoderma re esei for Brazilian biorefineries. Journal of Biotechnology for Biofuels, 10(30), 1–17.Google Scholar
  19. Fan, L. T., Lee, Y.-H., & Beardmore, D. H. (1980). Major chemical and physical features of cellulosic materials as substrates for enzymic hydrolysis. Journal of Advances in Biochemical Engineering, 14, 101–117.CrossRefGoogle Scholar
  20. Frazzetto, Giovanni. (2003). White biotechnology. EMBO Reports, 4(9), 835–837.CrossRefGoogle Scholar
  21. Ghose, T. K., & Bisaria, V. S. (1979). Studies on the mechanism of enzymatic hydrolysis of cellulosic substances. Journal of Biotechnology and Bioengineering, 21(1), 131–146.CrossRefGoogle Scholar
  22. Igarashi, K., Wada, M., & Samejima, M. (2006). Enzymatic kinetics at a solid-liquid interface: Hydrolysis of crystalline celluloses by cellobiohydrolase. Journal of FEBS, 273(13), 2869–2878.Google Scholar
  23. Javed, M. R., Noman, M., Shahid, M., et al. (2019). Current situation of biofuel production and its enhancement by CRISPR/Cas9-mediated genome engineering of microbial cells. Journal of Microbiological Research, 219, 1–11. Scholar
  24. Jiang, Liquan, Zheng, Anqing, Zhao, Zengli, et al. (2016). The comparision of obtaining fermentable sugars from cellulose by enzyme hydrolysis and fast pyrolysis. Journal of Bioresource Technology, 200, 8–13.CrossRefGoogle Scholar
  25. Kaplan, A. M., Mandels, M., Pillion, E., et al. (1970). Resistance of weathered cotton cellulose to cellulase action. J Appl. Microbiol, 20(1), 85–93.Google Scholar
  26. Klyosov, A. A. (1988). Cellulases of the third generation. In J. P. Aubert, P. Beguin, & J. Millet (Eds.), Biochemistry and genetics of cellulose degradation (pp. 87–99). London: Academic Press.Google Scholar
  27. Kumar, A., Gautam, A., & Dutt, D. (2016). Co-Cultivation of Penicillium sp. AKB-24 and Aspergillus nidulans AKB-25 as a cost-effective method to produce cellulases for the hydrolysis of pearl millet stover. Journal of Fermentation, 2(2), 1–12.Google Scholar
  28. Liming, X., & Xueliang, S. (2004). High yield cellulase production by Trichoderma reesei ZU-02 on corn cob residue. Journal of Bioresource Technology, 91(3), 259–262.CrossRefGoogle Scholar
  29. Lynd, L. R., Weimer, P. J., Van Zyl, W. H., & Pretorius, I. S. (2002). Microbial cellulose utilization: Fundamentals and biotechnology. Journal of Microbiology and Molecular Biology Reviews, 66(3), 506–577.Google Scholar
  30. Madadi, M., Tu, Y., & Abbas, A. (2017). Recent status on enzymatic saccharification of lignocellulosic biomass for bioethanol production. Electronic Journal of Biology, 13(2), 135–143.Google Scholar
  31. Mansfield, S. D., Mooney, C., & Saddler, J. N. (1999). Substrate and enzyme characteristics that limit cellulose hydrolysis. Journal of Biotechnology Progress 15(5), 804–816.Google Scholar
  32. McMillan, J. D. (1994). Pretreatment of lignocellulosic biomass. In M. E. Himmel, J. O. Baker & R. P. Overend, (Eds.), Enzymatic conversion of biomass for fuels production (pp. 292–324). Washington, DC: American Chemical Society.Google Scholar
  33. Merino, S. T., & Cherry, J. (2007). Progress and challenges in enzyme development for biomass utilization. Journal of Advances in Biochemical Engineering Biotechnology, 108, 95–120.Google Scholar
  34. Mitchell, D. A., Krieger, N., Stuart, D. M., & Pandey, A. (2000). New developments in solid-state fermentation. II. Rational approaches to the design operation and scale-up of bioreactors. Journal of Process Biochemistry 35(10),1211–1225.Google Scholar
  35. Modenbach, A. A., & Nokes, S. E. (2013). Enzymatic hydrolysis of biomass at high-solids loadings–A review. Journal of Biomass and Bioenergy, 56, 526–544.Google Scholar
  36. Mohan, M., Banerjee, T., & Goud, V. V. (2015). Hydrolysis of bamboo biomass by Subcritical water treatment. Journal of Bioresource Technology 191, 244–252.
  37. Mosier, N. S., Wyman, C., Dale, B., Elander, R., et al. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Journal of Bioresource Technology, 96(6), 673–686.CrossRefGoogle Scholar
  38. Narang, S., Sahai, V., & Bisaria, V. S. (2001). Optimization of xylanase production by Melanocarpusalbomyces IIS 68 in solid-state fermentation using response surface methodology. Journal of Bioscience and Bioengineering, 91(4), 425–427.Google Scholar
  39. Pino, M. S., Rodríguez-Jasso, R. M., Michelin, M., Flores-Gallegos, A. C., Morales-Rodriguez, R., Teixeira, J. A., & Ruiz, H. A. (2018). Bioreactor design for enzymatic hydrolysis of biomass under the biorefinery concept. Chemical Engineering Journal, 347, 119–136.Google Scholar
  40. Quiroz-Castañeda, R. E., & Folch-Mallol, J. L. (2013). Sustainable-degradation-of-lignocellulosic-biomass-techniques-applications-and-commercialization/hydrolysis-of-biomass-mediated-by-cellulases-for-the-production-of-sugars. Hydrolysis of biomass mediated by cellulases for the production of sugars. In A. Chandel (Ed.), Sustainable degradation of lignocellulosic biomass-techniques, applications and commercialization (pp.119–155). Intech Open.
  41. Sakakibara, A. (1980). A structural model of softwood lignin. Journal of Wood Science and Technology, 14, 89–100.CrossRefGoogle Scholar
  42. Tayyab, M., Noman, A., Islam, W., et al. (2018). Bioethanol production from lignocellulosic biomass by environment-friendly pretreatment methods: A review. Journal of Applied Ecology and Environmental Research, 16(1), 225–249.CrossRefGoogle Scholar
  43. Tenkanen, M., & Poutanen, K. (1992). Significance of esterases in degradation of xylans. In J. Visser, M. A. Kusters-Van Someran, G. Beldman, & A. G. J. Voragen (Eds.), Xvlans and xvlanases (pp. 203–212). Amsterdam: Elsevier Science Publishers.Google Scholar
  44. Tomme, P., Heriban, V., & Claeyssens, M. (1990). Adsorption of two cellobiohydrolasesfrom Trichoderma reesei to Avicel: evidence for exo synergism and possible loose complex formation. Journal of Biotechnology Letters, 12(7), 525–530.CrossRefGoogle Scholar
  45. Walker, L., & Wilson, D. (1991). Enzymatic hydrolysis of cellulose: An overview. Journal of Bioresource Technology 36(1), 3–14.Google Scholar
  46. Weiss, N. D., Felby, C., & Thygesen, L. G. (2019). Enzymatic hydrolysis is limited by biomass-water interactions at high solid: improved performance through substrate modifications. Journal of Biotechnology for Biofuels, 12(1), 3.
  47. Wright, J. D. (1988). Ethanol from biomass by enzymatic hydrolysis. Journal of Chemical Engineering Progress, 84(8), 62–74.Google Scholar
  48. Wright, J. D., Wyman, C. E., & Grohmann, K. (1988). Simultaneous saccharification and fermentation of lignocellulose: Process evaluation. Journal of Applied Biochemistry and Biotechnology, 18(1), 75–90.CrossRefGoogle Scholar
  49. Wyman, C. E. (1999). Biomass ethanol: Technical progress, opportunities, and commercial challenges. Annual Review of Energy and the Environment, 24, 189–226.CrossRefGoogle Scholar
  50. Yu, X., Boa, X., Zhou, C., & Zhang, L. (2018).0 Ultrasound-ionic liquid enhanced enzymatic and acid hydrolysis of biomass cellulose. Journal of Ultrasonics Sonochemistry, 41, 410–418.
  51. Zhang, X., Qu, T., & Mosier, N. S. et al. (2018). Cellulose modification by recyclable swelling solvents. Journal of Biotechnology for Biofuels, 11, 191.Google Scholar
  52. Zhang, Y., Huang, M., Su, J., et al. (2019). Overcoming biomass recalcitrance by synergistic pretreatment of mechanical activitation and metal salt for enhancing enzymatic conversion of lignocellulose: Fungal. Journal of Biotechnology for Biofuels, 12, 12.CrossRefGoogle Scholar
  53. Zheng, Y., Pan, Z., Zhang, R., Wang, D., Jenkins, B. (2008). Non-ionic surfactants and non-catalytic protein treatment on enzymatic hydrolysis of pretreated creeping wild ryegrass. Journal of Applied Biochemistry and Biotechnology, 146, 231–248.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Uma Addepally
    • 1
    Email author
  • Chiranjeevu Thulluri
    • 1
  • Vani Gandham
    • 1
  • Kiran Kumari Palety
    • 1
  • Kanakaraju Yerra
    • 1
  1. 1.Centre for Biotechnology, IST, Jawaharlal Nehru Technological University Hyderabad (JNTUH)HyderabadIndia

Personalised recommendations