Advertisement

Adaptive IIR Filters

  • Paulo S. R. DinizEmail author
Chapter

Abstract

Adaptive infinite impulse response (IIR) filters are those in which the zeros and poles of the filter can be adapted. For that benefit, the adaptive IIR filters usually have adaptive coefficients on the transfer function numerator and denominator. (There are adaptive filtering algorithms with fixed poles.) Adaptive IIR filters present some advantages as compared with the adaptive FIR filters, including reduced computational complexity. If both have the same number of coefficients, the frequency response of the IIR filter can approximate much better a desired characteristic.

References

  1. 1.
    P.S.R. Diniz, E.A.B. da Silva, S.L. Netto, Digital Signal Processing: System Analysis and Design, 2nd edn. (Cambridge University Press, Cambridge, 2010)Google Scholar
  2. 2.
    A. Antoniou, Digital Signal Processing: Signals, Systems, and Filters (McGraw Hill, New York, 2005)Google Scholar
  3. 3.
    C.R. Johnson Jr., Adaptive IIR filtering: current results and open issues. IEEE Trans. Inf. Theory (IT) 30, 237–250 (1984)Google Scholar
  4. 4.
    L. Ljung, T. Söderström, Theory and Practice of Recursive Identification (MIT, Cambridge, 1983)Google Scholar
  5. 5.
    S.A. White, An adaptive recursive digital filter, in Proceedings of the 9th Asilomar Conference on Circuits, Systems, and Computers, Pacific Grove, CA (1975), pp. 21–25Google Scholar
  6. 6.
    S. Hovarth Jr., A new adaptive recursive LMS filter, in Proceedings of the Digital Signal Processing Conference, Florence, Italy (1980), pp. 21–26Google Scholar
  7. 7.
    T.C. Hsia, A simplified adaptive recursive filter design. Proc. IEEE 69, 1153–1155 (1981)CrossRefGoogle Scholar
  8. 8.
    R.A. David, A modified cascade structure for IIR adaptive algorithms, in Proceedings of the 15th Asilomar Conference on Circuits, Systems, and Computers, Pacific Grove, CA (1981), pp. 175–179Google Scholar
  9. 9.
    J.J. Shynk, Adaptive IIR filtering using parallel-form realization. IEEE Trans. Acoust. Speech Signal Process. 37, 519–533 (1989)CrossRefGoogle Scholar
  10. 10.
    D. Parikh, N. Ahmed, S.D. Stearns, An adaptive lattice algorithm for recursive filters. IEEE Trans. Acoust. Speech Signal Process. (ASSP) 28, 110–112 (1980)CrossRefGoogle Scholar
  11. 11.
    I.L. Ayala, On a new adaptive lattice algorithm for recursive filters. IEEE Trans. Acoust. Speech Signal Process. (ASSP) 30, 316–319 (1982)MathSciNetCrossRefGoogle Scholar
  12. 12.
    J.J. Shynk, On lattice-form algorithms for adaptive IIR filtering, in Proceedings of the IEEE International Conference on Acoustics, Speech, Signal Processing, New York, NY (1988), pp. 1554–1557Google Scholar
  13. 13.
    J.A. Rodríguez-Fonollosa, E. Masgrau, Simplified gradient calculation in adaptive IIR lattice filters. IEEE Trans. Signal Process. 39, 1702–1705 (1991)CrossRefGoogle Scholar
  14. 14.
    A.H. Gray Jr., J.D. Markel, Digital lattice and ladder filter synthesis. IEEE Trans. Audio Electroacoust. (AU) 21, 492–500 (1973)CrossRefGoogle Scholar
  15. 15.
    F. Itakura, S. Saito, Digital filtering techniques for speech analysis and synthesis, in Proceedings of the 7th International Congress on Acoustics, Paper 25C–1, Budapest, Hungary (1971), pp. 261–264Google Scholar
  16. 16.
    M. Tummala, New adaptive normalised lattice algorithm for recursive filters. Electron. Lett. 24, 659–661 (1988)CrossRefGoogle Scholar
  17. 17.
    P.S.R. Diniz, J.E. Cousseau, A. Antoniou, Improved parallel realization of IIR adaptive filters. Proc. IEE Part G: Circuits Device Syst. 140, 322–328 (1993)CrossRefGoogle Scholar
  18. 18.
    P.A. Regalia, Adaptive IIR Filtering for Signal Processing and Control (Marcel Dekker, New York, 1995)Google Scholar
  19. 19.
    J.M. Romano, M.G. Bellanger, Fast least-squares adaptive notch filtering. IEEE Trans. Acoust. Speech Signal Process. 36, 1536–1540 (1988)CrossRefGoogle Scholar
  20. 20.
    H. Fan, Y. Yang, Analysis of a frequency-domain adaptive IIR filter. IEEE Trans. Acoust. Speech Signal Process. 38, 864–870 (1990)CrossRefGoogle Scholar
  21. 21.
    P.S.R. Diniz, J.E. Cousseau, A. Antoniou, Fast parallel realization for IIR adaptive filters. IEEE Trans. Circuits Syst.-II: Analog Digit. Signal Process. 41, 561–567 (1994)CrossRefGoogle Scholar
  22. 22.
    P.S.R. Diniz, A. Antoniou, Digital-filter structures based on the concept of the voltage-conversion generalized immittance converter. Can. J. Electr. Comput. Eng. 13, 90–98 (1988)CrossRefGoogle Scholar
  23. 23.
    H. Fan, A structural view of asymptotic convergence speed of adaptive IIR filtering algorithms: part I-infinite precision implementation. IEEE Trans. Signal Process. 41, 1493–1517 (1993)CrossRefGoogle Scholar
  24. 24.
    J.E. Cousseau, P.S.R. Diniz, G. Sentoni, O. Agamennoni, On orthogonal realizations for adaptive IIR filters. Int. J. Circuit Theory Appl. 28 (Wiley), 481–500 (2000)Google Scholar
  25. 25.
    K.J. \(\dot{{\rm A}}\)ström, T. Söderström, Uniqueness of the maximum likelihood estimates of the parameters of an ARMA model. IEEE Trans. Autom. Control (AC) 19, 769–773 (1974)Google Scholar
  26. 26.
    T. Söderström, On the uniqueness of maximum likelihood identification. Automatica 11, 193–197 (1975)MathSciNetCrossRefGoogle Scholar
  27. 27.
    S.D. Stearns, Error surfaces of recursive adaptive filters. IEEE Trans. Acoust. Speech Signal Process. (AssP) 29, 763–766 (1981)CrossRefGoogle Scholar
  28. 28.
    T. Söderström, P. Stoica, Some properties of the output error model. Automatica 18, 93–99 (1982)CrossRefGoogle Scholar
  29. 29.
    H. Fan, M. Nayeri, On error surfaces of sufficient order adaptive IIR filters: proofs and counterexamples to a unimodality conjecture. IEEE Trans. Acoust. Speech Signal Process. 37, 1436–1442 (1989)MathSciNetCrossRefGoogle Scholar
  30. 30.
    M. Nayeri, Uniqueness of MSOE estimates in IIR adaptive filtering; a search for necessary conditions, in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Glasgow, Scotland (1989), pp. 1047–1050Google Scholar
  31. 31.
    M. Nayeri, H. Fan, W.K. Jenkins, Some characteristics of error surfaces for insufficient order adaptive IIR filters. IEEE Trans. Acoust. Speech Signal Process. 38, 1222–1227 (1990)CrossRefGoogle Scholar
  32. 32.
    L. Ljung, System Identification: Theory for the User (Prentice Hall, Englewood Cliffs, 1987)Google Scholar
  33. 33.
    T. Söderström, P. Stoica, System Identification (Prentice Hall International, Hempstead, 1989)Google Scholar
  34. 34.
    M. Nayeri, W.K. Jenkins, Alternate realizations to adaptive IIR filters and properties of their performance surfaces. IEEE Trans. Circuits Syst. 36, 485–496 (1989)MathSciNetCrossRefGoogle Scholar
  35. 35.
    S.L. Netto, P.S.R. Diniz, P. Agathoklis, Adaptive IIR filtering algorithms for system identification: a general framework. IEEE Trans. Educ. 26, 54–66 (1995)CrossRefGoogle Scholar
  36. 36.
    J.M. Mendel, Discrete Techniques of Parameter Estimation: The Equation Error Formulation (Marcel Dekker, New York, 1973)Google Scholar
  37. 37.
    T. Söderström, P. Stoica, Instrumental Variable Methods for System Identification (Springer, New York, 1983)Google Scholar
  38. 38.
    J.-N. Lin, R. Unbehauen, Bias-remedy least mean square equation error algorithm for IIR parameter recursive estimation. IEEE Trans. Signal Process. 40, 62–69 (1992)CrossRefGoogle Scholar
  39. 39.
    P.S.R. Diniz, J.E. Cousseau, A family of equation-error based IIR adaptive algorithms, in IEEE Proceedings on Midwest Symposium of Circuits and Systems, Lafayette, LA (1994), pp. 1083–1086Google Scholar
  40. 40.
    J.E. Cousseau, P.S.R. Diniz, A general consistent equation-error algorithm for adaptive IIR filtering. Signal Process. 56, 121–134 (1997)CrossRefGoogle Scholar
  41. 41.
    K. Steiglitz, L.E. McBride, A technique for the identification of linear systems. IEEE Trans. Autom. Control (AC) 10, 461–464 (1965)CrossRefGoogle Scholar
  42. 42.
    J.E. Cousseau, P.S.R. Diniz, A consistent Steiglitz-McBride algorithm, in Proceedings of the IEEE International Symposium of Circuits and Systems, Chicago, IL (1993), pp. 52–55Google Scholar
  43. 43.
    J.E. Cousseau, P.S.R. Diniz, New adaptive IIR filtering algorithms based on Steiglitz-McBride method. IEEE Trans. Signal Process. 45, 1367–1371 (1997)CrossRefGoogle Scholar
  44. 44.
    H. Fan, W.K. Jenkins, A new adaptive IIR filter. IEEE Trans. Circuits Syst. (CAS) 33, 939–947 (1986)CrossRefGoogle Scholar
  45. 45.
    T. Söderström, P. Stoica, On the stability of dynamic models obtained by least squares identification. IEEE Trans. Autom. Control (AC) 26, 575–577 (1981)MathSciNetCrossRefGoogle Scholar
  46. 46.
    J.B. Kenney, C.E. Rohrs, The composite regressor algorithm for IIR adaptive systems. IEEE Trans. Signal Process. 41, 617–628 (1993)CrossRefGoogle Scholar
  47. 47.
    S.L. Netto, P.S.R. Diniz, Composite algorithms for adaptive IIR filtering. IEE Electron. Lett. 28, 886–888 (1992)CrossRefGoogle Scholar
  48. 48.
    P. Stoica, T. Söderström, The Steiglitz-McBride identification algorithm revisited–convergence analysis and accuracy aspects. IEEE Trans. Autom. Control (AC) 26, 712–717 (1981)MathSciNetCrossRefGoogle Scholar
  49. 49.
    B.E. Usevitch, W.K. Jenkins, A cascade implementation of a new IIR adaptive digital filter with global convergence and improved convergence rates, in Proceedings of the IEEE International Symposium of Circuits and Systems, Portland, OR (1989), pp. 2140–2142Google Scholar
  50. 50.
    P.A. Regalia, Stable and efficient lattice algorithms for adaptive IIR filtering. IEEE Trans. Signal Process. 40, 375–388 (1992)CrossRefGoogle Scholar
  51. 51.
    J.E. Cousseau, P.S.R. Diniz, A new realization of IIR echo cancellers using the Steiglitz-McBride method, in Proceedings of the IEEE International Telecommunication Symposium, Rio de Janeiro, Brazil (1994), pp. 11–14Google Scholar
  52. 52.
    V.L. Stonick, M.H. Cheng, Adaptive IIR filtering: composite regressor method, in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Adelaide, Australia (1994)Google Scholar
  53. 53.
    H. Fan, M. Doroslovac̆ki, On ‘global convergence’ of Steiglitz–McBride adaptive algorithm. IEEE Trans. Circuits Syst.-II: Analog Digit. Signal Process. 40, 73–87 (1993)CrossRefGoogle Scholar
  54. 54.
    M.H. Cheng, V.L. Stonick, Convergence, convergence point and convergence rate for Steiglitz-McBride method: a unified approach, in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Adelaide, Australia (1994)Google Scholar
  55. 55.
    P.M. Crespo, M.L. Honig, Pole-zero decision feedback equalization with a rapidly converging adaptive IIR algorithm. IEEE J. Sel. Areas Commun. 9, 817–828 (1991)CrossRefGoogle Scholar
  56. 56.
    J.J. Shynk, Adaptive IIR filtering. IEEE ASSP Mag. 6, 4–21 (1989)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Universidade Federal do Rio de JaneiroNiteróiBrazil

Personalised recommendations