Virtual Teaching in an Engineering Context as Enabler for Internationalization Opportunities

  • Corinna Engelhardt-Nowitzki
  • Dominik PospisilEmail author
  • Richard Otrebski
  • Sabine Zangl
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1035)


The mobility of students that would be necessary to gain intercultural internationalization experience during their studies is not available to the same extent for all students. In engineering it is partly possible to replace physical presence by virtualized technical arrangements – e.g. by web access to the sensors and actuators of a robot or machine or by using 3D printing technology. The project ENGINE of the University of Applied Sciences (UAS) Technikum Wien – Engineering goes International – develops such concepts from a technical and didactic point of view. This paper gives a brief overview of the experience gained in this case study with academic programs in e.g., mechatronics/robotics, mechanical engineering and international industrial engineering. The approach and achieved results can easily be applied as well in other engineering study programs – e.g., electronics, informatics and many more.



We would like to thank the City of Vienna and especially the MA23 department for their friendly support of the project ENGINE. Thanks are also due to the company SMC for the friendly support with hardware components for the marble maze.


  1. 1.
    Sotz-Hollinger, G.: Karriereerwartungen berufsbegleitend Studierender. Zeitschrift für Hochschulentwicklung ZFHE 4(2), 10–22 (2009)Google Scholar
  2. 2.
    BMBWF (previously BMWFW): Hochschulmobilitätsstrategie des BMWFW, Vienna (2016)Google Scholar
  3. 3.
    Candelas Herias, F.A., Puente, S., Torres, F., Ortiz, F.G., Gil, P., Pomares, J.: A virtual laboratory for teaching Robotics. Int. J. Eng. Educ. 19(3), 363–370 (2003)Google Scholar
  4. 4.
    Despeisse, M., Minshall, T.: Skills and education for additive manufacturing: a review of emerging issues. In: Lödding, H., Riedel, R., Thoben, K.-D., von Cieminski, G., Kiritsis, D. (eds.) APMS 2017. IAICT, vol. 513, pp. 289–297. Springer, Cham (2017). Scholar
  5. 5.
    Bradford, H., Guzmán, A., Trujillo, M.-A.: Determinants of successful internationalisation processes in business schools. J. High. Educ. Policy Manag. 30(4), 435–452 (2017)CrossRefGoogle Scholar
  6. 6.
  7. 7.
  8. 8.
  9. 9.
    Schenk, M., Schumann, M. (eds.): Angewandte Virtuelle Techniken im Produkt-entstehungsprozess. Springer, Magdeburg (2016). Scholar
  10. 10.
    Mujber, T.S., Szecsi, T., Hashmi, M.S.: Virtual reality applications in manufacturing process simulation. J. Mater. Process. Technol. 155, 1834–1838 (2004)CrossRefGoogle Scholar
  11. 11.
    Nee, A.Y., Ong, S.K., Chryssolouris, G., Mourtzis, D.: Augmented reality applications in design and manufacturing. CIRP Ann. - Manuf. Technol. 61, 657–679 (2012)CrossRefGoogle Scholar
  12. 12.
    Grubert, J.: Die Zukunft sehen: Die Chancen und Herausforderungen der Erweiterten und Virtuellen Realität für industrielle Anwendungen, Coburg (2016)Google Scholar
  13. 13. Accessed 12 June 2019

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Corinna Engelhardt-Nowitzki
    • 1
  • Dominik Pospisil
    • 1
    Email author
  • Richard Otrebski
    • 1
  • Sabine Zangl
    • 1
  1. 1.University of Applied Sciences Technikum WienViennaAustria

Personalised recommendations