Advertisement

Performance Analysis of WMNs by WMN-PSOHC-DGA Simulation System Considering Linearly Decreasing Inertia Weight and Linearly Decreasing Vmax Replacement Methods

  • Admir Barolli
  • Shinji SakamotoEmail author
  • Seiji Ohara
  • Leonard Barolli
  • Makoto Takizawa
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1035)

Abstract

The Wireless Mesh Networks (WMNs) are becoming an important networking infrastructure because they have many advantages such as low cost and increased high speed wireless Internet connectivity. In our previous work, we implemented a Particle Swarm Optimization (PSO) and Hill Climbing (HC) based hybrid simulation system, called WMN-PSOHC, and a simulation system based on Genetic Algorithm (GA), called WMN-GA, for solving node placement problem in WMNs. Then, we implemented a hybrid simulation system based on PSOHC and distributed GA (DGA), called WMN-PSOHC-DGA. In this paper, we analyze the performance of WMNs using WMN-PSOHC-DGA simulation system considering Linearly Decreasing Inertia Weight Method (LDIWM) and Linearly Decreasing Vmax Method (LDVM). Simulation results show that a good performance is achieved for LDIWM compared with the case of LDVM.

References

  1. 1.
    Akyildiz, I.F., Wang, X., Wang, W.: Wireless mesh networks: a survey. Comput. Netw. 47(4), 445–487 (2005)CrossRefGoogle Scholar
  2. 2.
    Barolli, A., Sakamoto, S., Barolli, L., Takizawa, M.: Performance analysis of simulation system based on particle swarm optimization and distributed genetic algorithm for WMNs considering different distributions of mesh clients. In: International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, pp. 32–45. Springer, Heidelberg (2018)CrossRefGoogle Scholar
  3. 3.
    Barolli, A., Sakamoto, S., Ozera, K., Barolli, L., Kulla, E., Takizawa, M.: Design and implementation of a hybrid intelligent system based on particle swarm optimization and distributed genetic algorithm. In: International Conference on Emerging Internetworking, Data & Web Technologies, pp. 79–93. Springer, Heidelberg (2018)Google Scholar
  4. 4.
    Franklin, A.A., Murthy, C.S.R.: Node placement algorithm for deployment of two-tier wireless mesh networks. In: Proceedings of Global Telecommunications Conference, pp. 4823–4827 (2007)Google Scholar
  5. 5.
    Girgis, M.R., Mahmoud, T.M., Abdullatif, B.A., Rabie, A.M.: Solving the wireless mesh network design problem using genetic algorithm and simulated annealing optimization methods. Int. J. Comput. Appl. 96(11), 1–10 (2014)Google Scholar
  6. 6.
    Inaba, T., Elmazi, D., Sakamoto, S., Oda, T., Ikeda, M., Barolli, L.: A secure-aware call admission control scheme for wireless cellular networks using fuzzy logic and its performance evaluation. J. Mob. Multimedia 11(3&4), 213–222 (2015)Google Scholar
  7. 7.
    Inaba, T., Obukata, R., Sakamoto, S., Oda, T., Ikeda, M., Barolli, L.: Performance evaluation of a QoS-aware fuzzy-based CAC for LAN access. Int. J. Space-Based Situated Comput. 6(4), 228–238 (2016)CrossRefGoogle Scholar
  8. 8.
    Inaba, T., Sakamoto, S., Oda, T., Ikeda, M., Barolli, L.: A testbed for admission control in WLAN: a fuzzy approach and its performance evaluation. In: International Conference on Broadband and Wireless Computing, Communication and Applications, pp. 559–571. Springer, Heidelberg (2016)Google Scholar
  9. 9.
    Maolin, T., et al.: Gateways placement in backbone wireless mesh networks. Int. J. Commun. Netw. Syst. Sci. 2(1), 44 (2009)Google Scholar
  10. 10.
    Matsuo, K., Sakamoto, S., Oda, T., Barolli, A., Ikeda, M., Barolli, L.: Performance analysis of WMNs by WMN-GA simulation system for two WMN architectures and different TCP congestion-avoidance algorithms and client distributions. Int. J. Commun. Netw. Distrib. Syst. 20(3), 335–351 (2018)CrossRefGoogle Scholar
  11. 11.
    Muthaiah, S.N., Rosenberg, C.P.: Single gateway placement in wireless mesh networks. In: Proceedings of 8th International IEEE Symposium on Computer Networks, pp. 4754–4759 (2008)Google Scholar
  12. 12.
    Naka, S., Genji, T., Yura, T., Fukuyama, Y.: A hybrid particle swarm optimization for distribution state estimation. IEEE Trans. Power Syst. 18(1), 60–68 (2003)CrossRefGoogle Scholar
  13. 13.
    Sakamoto, S., Kulla, E., Oda, T., Ikeda, M., Barolli, L., Xhafa, F.: A comparison study of hill climbing, simulated annealing and genetic algorithm for node placement problem in WMNs. J. High Speed Netw. 20(1), 55–66 (2014)Google Scholar
  14. 14.
    Sakamoto, S., Kulla, E., Oda, T., Ikeda, M., Barolli, L., Xhafa, F.: A simulation system for WMN based on SA: performance evaluation for different instances and starting temperature values. Int. J. Space-Based Situated Comput. 4(3–4), 209–216 (2014)CrossRefGoogle Scholar
  15. 15.
    Sakamoto, S., Kulla, E., Oda, T., Ikeda, M., Barolli, L., Xhafa, F.: Performance evaluation considering iterations per phase and SA temperature in WMN-SA system. Mob. Inf. Syst. 10(3), 321–330 (2014)Google Scholar
  16. 16.
    Sakamoto, S., Lala, A., Oda, T., Kolici, V., Barolli, L., Xhafa, F.: Application of WMN-SA simulation system for node placement in wireless mesh networks: a case study for a realistic scenario. Int. J. Mob. Comput. Multimedia Commun. (IJMCMC) 6(2), 13–21 (2014)CrossRefGoogle Scholar
  17. 17.
    Sakamoto, S., Oda, T., Ikeda, M., Barolli, L., Xhafa, F.: An integrated simulation system considering WMN-PSO simulation system and network simulator 3. In: International Conference on Broadband and Wireless Computing, Communication and Applications, pp. 187–198. Springer, Heidelberg (2016)Google Scholar
  18. 18.
    Sakamoto, S., Oda, T., Ikeda, M., Barolli, L., Xhafa, F.: Implementation and evaluation of a simulation system based on particle swarm optimisation for node placement problem in wireless mesh networks. Int. J. Commun. Netw. Distrib. Syst. 17(1), 1–13 (2016)CrossRefGoogle Scholar
  19. 19.
    Sakamoto, S., Oda, T., Ikeda, M., Barolli, L., Xhafa, F.: Implementation of a new replacement method in WMN-PSO simulation system and its performance evaluation. In: The 30th IEEE International Conference on Advanced Information Networking and Applications (AINA-2016), pp. 206–211 (2016).  https://doi.org/10.1109/AINA.2016.42
  20. 20.
    Sakamoto, S., Obukata, R., Oda, T., Barolli, L., Ikeda, M., Barolli, A.: Performance analysis of two wireless mesh network architectures by WMN-SA and WMN-TS simulation systems. J. High Speed Netw. 23(4), 311–322 (2017)CrossRefGoogle Scholar
  21. 21.
    Sakamoto, S., Ozera, K., Ikeda, M., Barolli, L.: Performance evaluation of WMNs by WMN-PSOSA simulation system considering constriction and linearly decreasing inertia weight methods. In: International Conference on Network-Based Information Systems, pp. 3–13. Springer, Heidelberg (2017)Google Scholar
  22. 22.
    Sakamoto, S., Ozera, K., Oda, T., Ikeda, M., Barolli, L.: Performance evaluation of intelligent hybrid systems for node placement in wireless mesh networks: a comparison study of WMN-PSOHC and WMN-PSOSA. In: International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, pp. 16–26. Springer, Heidelberg (2017)Google Scholar
  23. 23.
    Sakamoto, S., Ozera, K., Oda, T., Ikeda, M., Barolli, L.: Performance evaluation of WMN-PSOHC and WMN-PSO simulation systems for node placement in wireless mesh networks: a comparison study. In: International Conference on Emerging Internetworking, Data & Web Technologies, pp. 64–74. Springer, Heidelberg (2017)Google Scholar
  24. 24.
    Sakamoto, S., Barolli, A., Barolli, L., Takizawa, M.: Design and implementation of a hybrid intelligent system based on particle swarm optimization, hill climbing and distributed genetic algorithm for node placement problem in WMNs: a comparison study. In: The 32nd IEEE International Conference on Advanced Information Networking and Applications (AINA-2018), pp. 678–685. IEEE (2018)Google Scholar
  25. 25.
    Sakamoto, S., Ozera, K., Barolli, A., Barolli, L., Kolici, V., Takizawa, M.: Performance evaluation of WMN-PSOSA considering four different replacement methods. In: International Conference on Emerging Internetworking, Data & Web Technologies, pp. 51–64. Springer, Heidelberg (2018)Google Scholar
  26. 26.
    Sakamoto, S., Ozera, K., Ikeda, M., Barolli, L.: Implementation of intelligent hybrid systems for node placement problem in WMNs considering particle swarm optimization, hill climbing and simulated annealing. Mob. Netw. Appl. 23(1), 27–33 (2018) CrossRefGoogle Scholar
  27. 27.
    Sakamoto, S., Ozera, K., Barolli, A., Ikeda, M., Barolli, L., Takizawa, M.: Implementation of an intelligent hybrid simulation systems for WMNs based on particle swarm optimization and simulated annealing: performance evaluation for different replacement methods. Soft. Comput. 23(9), 3029–3035 (2019)CrossRefGoogle Scholar
  28. 28.
    Schutte, J.F., Groenwold, A.A.: A study of global optimization using particle swarms. J. Glob. Optim. 31(1), 93–108 (2005)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Shi, Y.: Particle swarm optimization. IEEE Connect. 2(1), 8–13 (2004)Google Scholar
  30. 30.
    Shi, Y., Eberhart, R.C.: Parameter selection in particle swarm optimization. In: Evolutionary Programming VII, pp. 591–600 (1998)Google Scholar
  31. 31.
    Vanhatupa, T., Hannikainen, M., Hamalainen, T.: Genetic algorithm to optimize node placement and configuration for WLAN planning. In: Proceedings of the 4th IEEE International Symposium on Wireless Communication Systems, pp. 612–616 (2007)Google Scholar
  32. 32.
    Wang, J., Xie, B., Cai, K., Agrawal, D.P.: Efficient mesh router placement in wireless mesh networks. In: Proceedings of IEEE Internatonal Conference on Mobile Adhoc and Sensor Systems (MASS-2007), pp. 1–9 (2007)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Admir Barolli
    • 1
  • Shinji Sakamoto
    • 2
    Email author
  • Seiji Ohara
    • 3
  • Leonard Barolli
    • 4
  • Makoto Takizawa
    • 5
  1. 1.Department of Information TechnologyAleksander Moisiu University of DurresDurresAlbania
  2. 2.Department of Computer and Information ScienceSeikei UniversityMusashino-shiJapan
  3. 3.Graduate School of EngineeringFukuoka Institute of TechnologyFukuokaJapan
  4. 4.Department of Information and Communication EngineeringFukuoka Institute of TechnologyFukuokaJapan
  5. 5.Department of Advanced Sciences, Faculty of Science and EngineeringHosei UniversityKoganei-ShiJapan

Personalised recommendations