Advertisement

A Message Relaying Method with a Dynamic Timer Considering Non-signal Duration from Neighboring Nodes for Vehicular DTN

  • Shogo Nakasaki
  • Makoto IkedaEmail author
  • Leonard Barolli
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1035)

Abstract

For End-to-End (E2E) communication in a sparse vehicular network is needed a flexible message delivery method that can be applied for large transmission delay and link disconnection. In this paper, we propose a message relaying method with dynamic timer considering non-signal duration from neighboring vehicles for Vehicular Delay/Disruption/Disconnection Tolerant Networking (DTN). From the simulation results, we found that our proposed method can provide a high delivery rate by using the dynamic timer in Vehicular DTN.

Keywords

Message relaying method Vehicular DTN Dynamic timer 

References

  1. 1.
    Delay- and disruption-tolerant networks (DTNs) tutorial. NASA/JPL’s Interplanetary Internet (IPN) Project (2012). http://www.warthman.com/images/DTN_Tutorial_v2.0.pdf
  2. 2.
    Rec. ITU-R P.1411-7: Propagation data and prediction methods for the planning of short-range outdoor radiocommunication systems and radio local area networks in the frequency range 300 MHz to 100 GHz. ITU (2013)Google Scholar
  3. 3.
    Araniti, G., Bezirgiannidis, N., Birrane, E., Bisio, I., Burleigh, S., Caini, C., Feldmann, M., Marchese, M., Segui, J., Suzuki, K.: Contact graph routing in DTN space networks: overview, enhancements and performance. IEEE Commun. Mag. 53(3), 38–46 (2015)CrossRefGoogle Scholar
  4. 4.
    Araniti, G., Campolo, C., Condoluci, M., Iera, A., Molinaro, A.: Lte for vehicular networking: a survey. IEEE Commun. Mag. 21(5), 148–157 (2013)CrossRefGoogle Scholar
  5. 5.
    Caini, C., Cruickshank, H., Farrell, S., Marchese, M.: Delay- and disruption-tolerant networking (DTN): an alternative solution for future satellite networking applications. Proc. IEEE 99(11), 1980–1997 (2011)CrossRefGoogle Scholar
  6. 6.
    Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst, R., Scott, K., Fall, K., Weiss, H.: Delay-tolerant networking architecture. IETF RFC 4838 (Informational), April 2007Google Scholar
  7. 7.
    Dias, J.A.F.F., Rodrigues, J.J.P.C., Xia, F., Mavromoustakis, C.X.: A cooperative watchdog system to detect misbehavior nodes in vehicular delay-tolerant networks. IEEE Trans. Industr. Electron. 62(12), 7929–7937 (2015)CrossRefGoogle Scholar
  8. 8.
    Fall, K.: A delay-tolerant network architecture for challenged Internets. In: Proceedings of the International Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, SIGCOMM 2003, pp. 27–34 (2003)Google Scholar
  9. 9.
    Grassi, G., Pesavento, D., Pau, G., Vuyyuru, R., Wakikawa, R., Zhang, L.: VANET via named data networking. In: Proceedings of the IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS 2014), pp. 410–415, April 2014Google Scholar
  10. 10.
    Hou, X., Li, Y., Chen, M., Wu, D., Jin, D., Chen, S.: Vehicular fog computing: a viewpoint of vehicles as the infrastructures. IEEE Trans. Veh. Technol. 65(6), 3860–3873 (2016)CrossRefGoogle Scholar
  11. 11.
    Kenney, J.B.: Dedicated short-range communications (DSRC) standards in the united states. Proc. IEEE 99, 1162–1182 (2011)CrossRefGoogle Scholar
  12. 12.
    Lin, D., Kang, J., Squicciarini, A., Wu, Y., Gurung, S., Tonguz, O.: MoZo: a moving zone based routing protocol using pure V2V communication in VANETs. IEEE Trans. Mob. Comput. 16(5), 1357–1370 (2017)CrossRefGoogle Scholar
  13. 13.
    Mahmoud, A., Noureldin, A., Hassanein, H.S.: VANETs positioning in urban environments: a novel cooperative approach. In: Proceedings of the IEEE 82nd Vehicular Technology Conference (VTC-2015 Fall), pp. 1–7, September 2015Google Scholar
  14. 14.
    Nakasaki, S., Yoshino, Y., Ikeda, M., Barolli, L.: A recovery method for reducing storage usage considering different thresholds in VANETs. In: Proceedings of the 21st International Conference on Network-Based Information Systems (NBiS-2018), pp. 793–802, September 2018Google Scholar
  15. 15.
    Ning, Z., Hu, X., Chen, Z., Zhou, M., Hu, B., Cheng, J., Obaidat, M.S.: A cooperative quality-aware service access system for social internet of vehicles. IEEE Internet Things J. 5(4), 2506–2517 (2018)CrossRefGoogle Scholar
  16. 16.
    Ohn-Bar, E., Trivedi, M.M.: Learning to detect vehicles by clustering appearance patterns. IEEE Trans. Intell. Transp. Syst. 16(5), 2511–2521 (2015)CrossRefGoogle Scholar
  17. 17.
    Radenkovic, M., Walker, A.: CognitiveCharge: disconnection tolerant adaptive collaborative and predictive vehicular charging. In: Proceedings of the 4th ACM MobiHoc Workshop on Experiences with the Design and Implementation of Smart Objects (SMARTOBJECTS-2018), June 2018Google Scholar
  18. 18.
    Ramanathan, R., Hansen, R., Basu, P., Hain, R.R., Krishnan, R.: Prioritized epidemic routing for opportunistic networks. In: Proceedings of the 1st International MobiSys Workshop on Mobile Opportunistic Networking (MobiOpp 2007), pp. 62–66 (2007)Google Scholar
  19. 19.
    Rsch, S., Schrmann, D., Kapitza, R., Wolf, L.: Forward secure delay-tolerant networking. In: Proceedings of the 12th Workshop on Challenged Networks (CHANTS-2017), pp. 7–12, October 2017Google Scholar
  20. 20.
    Rohrer, J.P., Mauldin, A.N.: Implementation of epidemic routing with IP convergence layer in ns-3. In: Proceedings of the 10th Workshop on ns-3 (WNS3-2018), pp. 69–76, June 2018Google Scholar
  21. 21.
    Scenargie: Space-time engineering, LLC. http://www.spacetime-eng.com/
  22. 22.
    Stute, M., Maass, M., Schons, T., Hollick, M.: Reverse engineering human mobility in large-scale natural disasters. In: Proceedings of the 20th ACM International Conference on Modelling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM-2017), pp. 219–226, November 2017Google Scholar
  23. 23.
    Theodoropoulos, T., Damousis, Y., Amditis, A.: A load balancing control algorithm for EV static and dynamic wireless charging. In: Proceedings of the IEEE 81st Vehicular Technology Conference (VTC-2015 Spring), pp. 1–5, May 2015Google Scholar
  24. 24.
    Tornell, S.M., Calafate, C.T., Cano, J.C., Manzoni, P.: DTN protocols for vehicular networks: an application oriented overview. IEEE Commun. Surv. Tutor. 17(2), 868–887 (2015)CrossRefGoogle Scholar
  25. 25.
    Uchida, N., Ishida, T., Shibata, Y.: Delay tolerant networks-based vehicle-to-vehicle wireless networks for road surveillance systems in local areas. Int. J. Space-Based Situated Comput. 6(1), 12–20 (2016)CrossRefGoogle Scholar
  26. 26.
    Urquiza-Aguiar, L., Igartua, M.A., Tripp-Barba, C., Caldern-Hinojosa, X.: 2hGAR: 2-hops geographical anycast routing protocol for vehicle-to-infrastructure communications. In: Proceedings of the 15th ACM International Symposium on Mobility Management and Wireless Access (MobiWac-2017), pp. 145–152, November 2017Google Scholar
  27. 27.
    Vahdat, A., Becker, D.: Epidemic routing for partially-connected ad hoc networks. Technical report, Duke University (2000)Google Scholar
  28. 28.
    Wyatt, J., Burleigh, S., Jones, R., Torgerson, L., Wissler, S.: Disruption tolerant networking flight validation experiment on NASA’s EPOXI mission. In: Proceedings of the 1st International Conference on Advances in Satellite and Space Communications (SPACOMM-2009), pp. 187–196, July 2009Google Scholar
  29. 29.
    Yoshino, Y., Nakasaki, S., Ikeda, M., Barolli, L.: A threshold-based adaptive method for message suppression controller in vehicular DTNs. In: Proceedings of the 13th International Conference on Broad-Band Wireless Computing, Communication and Applications (BWCCA-2018), pp. 517–524, October 2018Google Scholar
  30. 30.
    Zhang, W., Jiang, S., Zhu, X., Wang, Y.: Cooperative downloading with privacy preservation and access control for value-added services in vanets. Int. J. Grid Util. Comput. 7(1), 50–60 (2016)CrossRefGoogle Scholar
  31. 31.
    Zhou, H., Wang, H., Li, X., Leung, V.C.M.: A survey on mobile data offloading technologies. IEEE Access 6, 5101–5111 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Graduate School of EngineeringFukuoka Institute of TechnologyFukuokaJapan
  2. 2.Department of Information and Communication EngineeringFukuoka Institute of TechnologyFukuokaJapan

Personalised recommendations