Advertisement

Opportunistic Communication by Pedestrians with Roadside Units as Message Caches

  • Tomoyuki Sueda
  • Naohiro HayashibaraEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1036)

Abstract

Opportunistic communication is one of the critical technologies in the area of advertisement, information sharing, disaster evacuation guidance in delay-tolerant networks (DTNs), vehicular ad hoc networks (VANETs) and so on. The efficiency of opportunistic communication is correlated to the movement pattern. Random walks are often used as the movement patterns of a pedestrian. Even amongst those, Lévy walk that is a family of random walks is attracted attention as a human movement pattern. There are lots of works of Lévy walk in the context of target detection in swarm robotics, analyzing human walk patterns, and modeling the behavior of animal foraging in recent years. According to these results, it is known as an efficient method to search and come across one another in a two-dimensional plane. However, all these works assume a continuous plane and hardly any results on graphs are available. In this paper, we focus on message delivery based on opportunistic communication by pedestrians who move based on Lévy walk and Random walk movement patterns on the road network of a city. Moreover, we introduce roadside units located in the city, which play a role in the distributed message cache. So, we evaluate the impact of roadside units on message delivery in delay-tolerant networks consists of mobile devices of human pedestrians. We assume Random walk and Lévy walk as a pedestrian mobility model. Our simulation results show that the roadside units have a significant impact on message delivery with a small number of pedestrians.

References

  1. 1.
    Aleliunas, R., Karp, R.M., Lipton, R.J., Lovasz, L., Rackoff, C.: Random walks, universal traversal sequences, and the complexity of maze problems. In: Proceedings of the 20th Annual Symposium on Foundations of Computer Science (SFCS 1979), pp. 218–223 (1976)Google Scholar
  2. 2.
    Alzoubi, K.M., Wan, P.J., Frieder, O.: Message-optimal connected dominating sets in mobile ad hoc networks. In: Proceedings of the 3rd ACM International Symposium on Mobile Ad Hoc Networking & Computing, MobiHoc 2002, pp. 157–164. ACM, New York (2002).  https://doi.org/10.1145/513800.513820. http://doi.acm.org/10.1145/513800.513820
  3. 3.
    Balasubramanian, A., Levine, B., Venkataramani, A.: Dtn routing as a resource allocation problem. SIGCOMM Comput. Commun. Rev. 37(4), 373–384 (2007).  https://doi.org/10.1145/1282427.1282422. http://doi.acm.org/10.1145/1282427.1282422CrossRefGoogle Scholar
  4. 4.
    Baldoni, R., Beraldi, R., Quema, V., Querzoni, L., Tucci-Piergiovanni, S.: Tera: Topic-based event routing for peer-to-peer architectures. In: Proceedings of the 2007 International Conference on Distributed Event-based Systems, pp. 2–13 (2007)Google Scholar
  5. 5.
    Birand, B., Zafer, M., Zussman, G., Lee, K.W.: Dynamic graph properties of mobile networks under levy walk mobility. In: Proceedings of the 2011 IEEE Eighth International Conference on Mobile Ad-Hoc and Sensor Systems, MASS 2011, pp. 292–301. IEEE Computer Society, Washington, DC (2011).  https://doi.org/10.1109/MASS.2011.36
  6. 6.
    Bisnik, N., Abouzeid, A.A.: Optimizing random walk search algorithms in p2p networks. Comput. Netw. 51(6), 1499–1514 (2007).  https://doi.org/10.1016/j.comnet.2006.08.004CrossRefzbMATHGoogle Scholar
  7. 7.
    Buldyrev, S.V., Goldberger, A.L., Havlin, S., Peng, C.K., Simons, M., Stanley, H.E.: Generalized lévy-walk model for dna nucleotide sequences. Phys. Rev. E 47(6), 4514–4523 (1993)CrossRefGoogle Scholar
  8. 8.
    Desta, M.S., Hyytiä, E., Keränen, A., Kärkkäinen, T., Ott, J.: Evaluating (geo) content sharing with the one simulator. In: Proceedings of the 14th ACM Symposium Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM) (2013)Google Scholar
  9. 9.
    Dolev, S., Schiller, E., Welch, J.L.: Random walk for self-stabilizing group communication in ad hoc networks. IEEE Trans. Mob. Comput. 5(7), 893–905 (2006).  https://doi.org/10.1109/TMC.2006.104CrossRefGoogle Scholar
  10. 10.
    Draief, M., Ganesh, A.: A random walk model for infection on graphs: Spread of epidemics & rumours with mobile agents. Discrete Event Dyn. Syst. 21(1), 41–61 (2011).  https://doi.org/10.1007/s10626-010-0092-5MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Edwards, A.M., Phillips, R.A., Watkins, N.W., Freeman, M.P., Murphy, E.J., Afanasyev, V., Buldyrev, S.V., da Luz, M.G.E., Raposo, E.P., Stanley, H.E., Viswanathan, G.M.: Revisiting lévy flight search patterns of wandering albatrosses, bumblebees and deer. Nature 449, 1044–1048 (2007)CrossRefGoogle Scholar
  12. 12.
    Fujihara, A., Miwa, H.: Homesick lévy walk and optimal forwarding criterion of utility-based routing under sequential encounters. In: Proceedings of the Internet of Things and Inter-cooperative Computational Technologies for Collective Intelligence 2013, pp. 207–231 (2013)CrossRefGoogle Scholar
  13. 13.
    Helgason, Ó., Kouyoumdjieva, S.T., Karlsson, G.: Opportunistic communication and human mobility. IEEE Trans. Mob. Comput. 13(7), 1597–1610 (2014)CrossRefGoogle Scholar
  14. 14.
    Ikeda, S., Kubo, I., Yamashita, M.: The hitting and cover times of random walks on finite graphs using local degree information. Theor. Comput. Sci. 410(1), 94–100 (2009)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kuhn, F., Wattenhofer, R.: Constant-time distributed dominating set approximation. In: Proceedings of the Twenty-second Annual Symposium on Principles of Distributed Computing, PODC 2003, pp. 25–32. ACM, New York (2003).  https://doi.org/10.1145/872035.872040. http://doi.acm.org/10.1145/872035.872040
  16. 16.
    Lévy, P.: Théorie de L’addition des Variables Aléatoires. Gauthier-Villars, Paris (1937)zbMATHGoogle Scholar
  17. 17.
    Mizumoto, N., Abe, M.S., Dobata, S.: Optimizing mating encounters by sexually dimorphic movements. J. Roy. Soc. Interface 14(130), 20170086 (2017)CrossRefGoogle Scholar
  18. 18.
    Nonaka, Y., Ono, H., Sadakane, K., Yamashita, M.: The hitting and cover times of metropolis walks. Theor. Comput. Sci. 411(16–18), 1889–1894 (2010)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Rhee, I., Shin, M., Hong, S., Lee, K., Kim, S.J., Chong, S.: On the levy-walk nature of human mobility. IEEE/ACM Trans. Netw. 19(3), 630–643 (2011).  https://doi.org/10.1109/TNET.2011.2120618CrossRefGoogle Scholar
  20. 20.
    Shinki, K., Hayashibara, N.: Resource exploration using lévy walk on unit disk graphs. In: The 32nd IEEE International Conference on Advanced Information Networking and Applications (AINA-2018). Krakow, Poland (2018)Google Scholar
  21. 21.
    Shinki, K., Nishida, M., Hayashibara, N.: Message dissemination using lévy flight on unit disk graphs. In: The 31st IEEE International Conference on Advanced Information Networking and Applications (AINA 2017). Taipei, Taiwan ROC (2017)Google Scholar
  22. 22.
    Spyropoulos, T., Psounis, K., Raghavendra, C.S.: Efficient routing in intermittently connected mobile networks: The multiple-copy case. IEEE/ACM Trans. Netw. 14, 77–90 (2008)CrossRefGoogle Scholar
  23. 23.
    Thejaswini, M., Rajalakshmi, P., Desai, U.B.: Novel sampling algorithm for human mobility-based mobile phone sensing. IEEE Internet Things J. 2(3), 210–220 (2015)CrossRefGoogle Scholar
  24. 24.
    Vahdat, A., Becker, D.: Epidemic routing for partially-connected ad hoc networks. Technical Report CS-2000-06, Duke University (2000)Google Scholar
  25. 25.
    Valler, N.C., Prakash, B.A., Tong, H., Faloutsos, M., Faloutsos, C.: Epidemic spread in mobile ad hoc networks: Determining the tipping point. In: Proceedings of the 10th International IFIP TC 6 Conference on Networking - Volume Part I, NETWORKING 2011, pp. 266–280. Springer-Verlag, Heidelberg (2011). http://dl.acm.org/citation.cfm?id=2008780.2008807CrossRefGoogle Scholar
  26. 26.
    Viswanathan, G.M., Afanasyev, V., Buldyrev, S.V., Murphy, E.J., Prince, P.A., Stanley, H.E.: Lévy flight search patterns of wandering albatrosses. Nature 381, 413–415 (1996)CrossRefGoogle Scholar
  27. 27.
    Yang, X.S.: Cuckoo search via lévy flights. In: Proceedings of World Congress on Nature & Biologically Inspired Computing (NaBIC 2009), pp. 210–214 (2009)Google Scholar
  28. 28.
    Yang, X.S.: Firefly algorithm, lévy flights and global optimization. Res. Dev. Intell. Syst. XXVI, 209–218 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Graduate School of Frontier InformaticsKyoto Sangyo UniversityKyotoJapan
  2. 2.Faculty of Computer Science and EngineeringKyoto Sangyo UniversityKyotoJapan

Personalised recommendations