Advertisement

Emerging Technologies for Antiviral Drug Discovery

  • Badireddi Subathra LakshmiEmail author
  • Mohan Latha Abillasha
  • Pandjassarame Kangueane
Chapter

Abstract

Drug discovery for viral diseases is a continuing and expanding undertaking for improved public health. Development of effective and specific antiviral drugs is still a huge challenge. Increased viral outbreaks during the last several decades necessitate novel methods in combating them. The application of classical drug discovery approaches, supported by emerging technologies such as high performance computing (HPC) aided molecular geometric optimization based screening along with deep learning (hierarchical learning) using machine learning techniques (model build with known sample data) like artificial neural networks (ANN) is warranted towards personalized and community medicine in combating viral outbreaks to advance public health. Molecular information on the mechanisms of viral pathogenesis gathered from the scientific literature and stored in specialized relational databases play a critical role in gene discovery (linking host and viral genes to disease), target validation (often protein targets for disease control), and molecular screening of small molecule inhibitors to protein targets. An integrated approach relating data from clinical virology, genomics, proteomics, gene expression analysis, sequence profiling, structure-function analysis, molecular binding colorimetric (dye based) assays and computer-aided small molecule screening is critical in viral combat as well as public health. This chapter outlines the available resources (data and meta-data (derived data) in databases) and technologies (tools and algorithms) to refine current trends in order to accelerate the drug discovery process towards combating viruses.

Keywords

Drug discovery New chemical entity Docking tools Databases Geometric optimization High performance computing (HPC) Artificial neural network (ANN) Deep learning Viral diseases Viral outbreaks Viral combat 

Notes

Acknowledgement

We wish to express our sincere appreciation to all members of Tissue Culture & Drug Discovery Lab, Centre for Food Technology, Department of Biotechnology, Anna University, Chennai and Biomedical Informatics (P) Ltd. for many discussions on the subject of this chapter. We thank Dr. Paul Shapshak, Dr. Meena Kishore Sakharkar and Dr. Peter Natesan Pushparaj for their critical comments, suggestions and useful edits on the content of this chapter, which helped to make it contextual.

References

  1. 1.
    Pickett BE, Sadat EL, Zhang Y, Noronha JM, Squires RB, Hunt V, et al. ViPR: an open bioinformatics database and analysis resource for virology research. Nucleic Acids Res. 2011;40(D1):D593–8.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Hulo C, De Castro E, Masson P, Bougueleret L, Bairoch A, Xenarios I, et al. ViralZone: a knowledge resource to understand virus diversity. Nucleic Acids Res. 2010;39(suppl_1):D576–82.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2016;45(D1):D353–61.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Dong R, Zheng H, Tian K, Yau SC, Mao W, Yu W, et al. Virus database and online inquiry system based on natural vectors. Evol Bioinforma. 2017;13:1176934317746667.CrossRefGoogle Scholar
  5. 5.
    Tung CH, Lai NS, Li CY, Tsai SJ, Chen YC, Chen YC. Risk of rheumatoid arthritis in patients with hepatitis C virus infection receiving interferon-based therapy: a retrospective cohort study using the Taiwanese national claims database. BMJ Open. 2018;8(7):e021747.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    McLauchlan J, Innes H, Dillon JF, Foster G, Holtham E, McDonald S, et al. HCV Research UK Steering Committee. Cohort profile: the Hepatitis C Virus (HCV) Research UK clinical database and biobank. Int J Epidemiol. 2017;46(5):1391–h.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Hochstatter KR, Hull SJ, Stockman LJ, Stephens LK, Olson-Streed HK, Ehlenbach WJ, et al. Using database linkages to monitor the continuum of care for hepatitis C virus among syringe exchange clients: experience from a pilot intervention. Int J Drug Policy. 2017;42:22–5.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Fujita M, Sugiyama M, Sato Y, Nagashima K, Takahashi S, Mizokami M, Hata A. Hepatitis B virus reactivation in patients with rheumatoid arthritis: analysis of the National Database of Japan. J Viral Hepat. 2018;25(11):1312–20.PubMedCrossRefGoogle Scholar
  9. 9.
    Mouchet J, Bégaud B. Central demyelinating diseases after vaccination against hepatitis B virus: a disproportionality analysis within the VAERS database. Drug Saf. 2018;41(8):767–74.PubMedCrossRefGoogle Scholar
  10. 10.
    JinYJ LJW. Therapeutic priorities for solitary large hepatocellular carcinoma in a hepatitis B virus endemic area; an analysis of a nationwide cancer registry database. J Surg Oncol. 2017;115(4):407–16.CrossRefGoogle Scholar
  11. 11.
    Dey L, Mukhopadhyay A. DenvInt: a database of protein–protein interactions between dengue virus and its hosts. PLoS Negl Trop Dis. 2017;11(10):e0005879.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Chaudhury S, Gromowski GD, Ripoll DR, Khavrutskii IV, Desai V, Wallqvist A. Dengue virus antibody database: systematically linking serotype-specificity with epitope mapping in dengue virus. PLoS Negl Trop Dis. 2017;11(2):e0005395.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Melliez H, Mary-Krause M, Bocket L, Guiguet M, Abgrall S, De Truchis P, Katlama C, Martin-Blondel G, Henn A, Revest M, Robineau O. Risk of progressive multifocal leukoencephalopathy in the combination antiretroviral therapy era in the French hospital database on human immunodeficiency virus (ANRS-C4). Clin Infect Dis. 2018;67(2):275–82.PubMedCrossRefGoogle Scholar
  14. 14.
    Kroneman A, de Sousa R, Verhoef L, Koopmans MP, Vennema H. Usability of the international HAVNet hepatitis A virus database for geographical annotation, backtracing and outbreak detection. Eur Secur. 2018;23(37)  https://doi.org/10.2807/1560-7917.ES.2018.23.37.1700802.
  15. 15.
    Xie Y, Luo X, He Z, Zheng Y, Zuo Z, Zhao Q, et al. VirusMap: a visualization database for the influenza A virus. J Genet Genomics. 2017;44(5):281–4.PubMedCrossRefGoogle Scholar
  16. 16.
    Zhang Y, Aevermann BD, Anderson TK, Burke DF, Dauphin G, Gu Z, He S, Kumar S, Larsen CN, Lee AJ, Li X. Influenza Research Database: an integrated bioinformatics resource for influenza virus research. Nucleic Acids Res. 2017;45(D1):D466–74.PubMedCrossRefGoogle Scholar
  17. 17.
    Amand C, Tong S, Kieffer A, Kyaw MH. Healthcare resource use and economic burden attributable to respiratory syncytial virus in the United States: a claims database analysis. BMC Health Serv Res. 2018;18(1):294.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Cook H, Doncheva N, Szklarczyk D, von Mering C, Jensen L. Viruses. STRING: a virus-host protein-protein interaction database. Viruses. 2018;10(10):519.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Goodacre N, Aljanahi A, Nandakumar S, Mikailov M, Khan AS. A Reference Viral Database (RVDB) to enhance bioinformatics analysis of high-throughput sequencing for novel virus detection. mSphere. 2018;3(2):e00069–18.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Ignatieva EV, Igoshin AV, Yudin NS. A database of human genes and a gene network involved in response to tick-borne encephalitis virus infection. BMC Evol Biol. 2017;17(2):259.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Lefkowitz EJ, Dempsey DM, Hendrickson RC, Orton RJ, Siddell SG, Smith DB. Virus taxonomy: the database of the International Committee on Taxonomy of Viruses (ICTV). Nucleic Acids Res. 2018;46(D1):D708–17.PubMedCrossRefGoogle Scholar
  22. 22.
    Kim H, Kang N, An K, Kim D, Koo J, Kim MS. MRPrimerV: a database of PCR primers for RNA virus detection. Nucleic Acids Res. 2016;45(D1):D475–81.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Azami M, Jalilian FA, Khorshidi A, Mohammadi Y, Tardeh Z. The association between Borna Disease Virus and schizophrenia: a systematic review and meta-analysis. Asian J Psychiatr. 2018;34:67–73.PubMedCrossRefGoogle Scholar
  24. 24.
    Ru Y, Chen J, Wu D. Epstein-Barr virus post-transplant lymphoproliferative disease (PTLD) after hematopoietic stem cell transplantation. Eur J Haematol. 2018;101(3):283–90.PubMedCrossRefGoogle Scholar
  25. 25.
    Bollard CM, Cohen JI. How I treat T-cell chronic active Epstein-Barr virus disease. Blood. 2018;131(26):2899–905.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Arjunaraja S, Angelus P, Su HC, Snow AL. Impaired control of Epstein–Barr virus infection in B-cell expansion with NF-κB and T-cell Anergy disease. Front Immunol. 2018;9:198.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Hoeger B, Serwas NK, Boztug K. Human NF-κB1 Haploinsufficiency and Epstein–Barr virus-induced disease—molecular mechanisms and consequences. Front Immunol. 2018;8:1978.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Trehan I, De Silva SC. Management of Ebola virus disease in children. Infect Dis Clin N Am. 2018;32(1):201–14.CrossRefGoogle Scholar
  29. 29.
    Mérens A, Bigaillon C, Delaune D. Ebola virus disease: biological and diagnostic evolution from 2014 to 2017. Med Mal Infect. 2018;48(2):83–94.PubMedCrossRefGoogle Scholar
  30. 30.
    Fischer WA, Vetter P, Bausch DG, Burgess T, Davey RT, Fowler R, et al. Ebola virus disease: an update on post-exposure prophylaxis. Lancet Infect Dis. 2018;18(6):e183–92.PubMedCrossRefGoogle Scholar
  31. 31.
    Richards GA, Baker T, Amin P, Council of the World Federation of Societies of Intensive and Critical Care Medicine. Ebola virus disease: report from the taskforce on tropical diseases by the World Federation of Societies of Intensive and Critical Care Medicine. J Crit Care. 2018;43:352–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Brault AC, Savage HM, Duggal NK, Eisen RJ, Staples JE. Heartland virus epidemiology, vector association, and disease potential. Viruses. 2018;10(9):E498.PubMedCrossRefGoogle Scholar
  33. 33.
    Choi YM, Lee SY, Kim BJ. Naturally occurring hepatitis B virus reverse transcriptase mutations related to potential antiviral drug resistance and liver disease progression. World J Gastroenterol. 2018;24(16):1708.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Moorman AC, Rupp LB, Gordon SC, Zhong Y, Xing J, Lu M, et al. Long-term liver disease, treatment, and mortality outcomes among 17,000 persons diagnosed with chronic hepatitis C virus infection: current chronic hepatitis cohort study status and review of findings. Infect Dis Clin N Am. 2018;32(2):253–68.CrossRefGoogle Scholar
  35. 35.
    Ridruejo E, Mendizabal M, Silva MO. Rationale for treating hepatitis C virus infection in patients with mild to moderate chronic kidney disease. Hemodial Int. 2018;22(Suppl1):S97–S103.PubMedCrossRefGoogle Scholar
  36. 36.
    Al-Rabadi L, Box T, Singhania G, Al-Marji C, Agarwal A, Hall I, Gordon CE, Tran H. Rationale for treatment of hepatitis C virus infection in end-stage renal disease patients who are not kidney transplant candidates. Hemodial Int. 2018;22:S45–52.PubMedCrossRefGoogle Scholar
  37. 37.
    Ortiz GA, Trivedi HD, Nader C. Pharmacokinetics and drug interactions of medications used to treat hepatitis C virus infection in the setting of chronic kidney disease and kidney transplantation. Hemodial Int. 2018;22:S22–35.PubMedCrossRefGoogle Scholar
  38. 38.
    Matsuura K, Tanaka Y. Host genetic variations associated with disease progression in chronic hepatitis C virus infection. Hepatol Res. 2018;48(2):127–33.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Wijarnpreecha K, Chesdachai S, Jaruvongvanich V, Ungprasert P. Hepatitis C virus infection and risk of Parkinson’s disease: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol. 2018;30(1):9–13.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Jiménez-Sousa MÁ, Martínez I, Medrano LM, Fernández-Rodríguez A, Resino S. Vitamin D in Human immunodeficiency virus infection: influence on immunity and disease. Front Immunol. 2018;9:458.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Pinto DSM, da Silva MJLV. Cardiovascular disease in the setting of human immunodeficiency virus infection. CurrCardiol Rev. 2018;14(1):25–41.CrossRefGoogle Scholar
  42. 42.
    Tsabedze N, Vachiat A, Zachariah D, Manga P. A new face of cardiac emergencies: human immunodeficiency virus–related cardiac disease. Cardiol Clin. 2018;36(1):161–70.PubMedCrossRefGoogle Scholar
  43. 43.
    Harris SA, Harris EA. Molecular mechanisms for herpes simplex virus type 1 pathogenesis in Alzheimer’s disease. Front Aging Neurosci. 2018;10:48.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Hogestyn JM, Mock DJ, Mayer-Proschel M. Contributions of neurotropic human herpesviruses herpes simplex virus 1 and human herpesvirus 6 to neurodegenerative disease pathology. Neural Regen Res. 2018;13(2):211.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Farooq AV, Paley GL, Lubniewski AJ, Gonzales JA, Margolis TP. Unilateral posterior interstitial keratitis as a clinical presentation of herpes simplex virus disease. Cornea. 2018;37(3):375–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Bacik LC, Chung C. Human papillomavirus-associated cutaneous disease burden in human immunodeficiency virus (HIV)-positive patients: the role of human papillomavirus vaccination and a review of the literature. Int J Dermatol. 2018;57(6):627–34.PubMedCrossRefGoogle Scholar
  47. 47.
    Dayakar S, Pillai HR, Thulasi VP, Jayalekshmi D, Nair RR. Comparative study of molecular approaches for the detection of influenza virus from patient samples using real-time PCR: prospective disease burden study in Kerala (India) from 2010 to 2016. Curr Infect Dis Rep. 2018;20(8):24.PubMedCrossRefGoogle Scholar
  48. 48.
    Ivey KS, Edwards KM, Talbot HK. Respiratory syncytial virus and associations with cardiovascular disease in adults. J Am CollCardiol. 2018;71(14):1574–83.CrossRefGoogle Scholar
  49. 49.
    Karron RA, Zar HJ. Determining the outcomes of interventions to prevent respiratory syncytial virus disease in children: what to measure? Lancet Respir Med. 2018;6(1):65–74.PubMedCrossRefGoogle Scholar
  50. 50.
    Alcendor DJ. Zika virus infection and implications for kidney disease. J Mol Med (Berl). 2018;96(11):1145–51.CrossRefGoogle Scholar
  51. 51.
    Shehu NY, Shwe D, Onyedibe KI, Pam VC, Abok I, Isa SE, Egah DZ. Pathogenesis, diagnostic challenges and treatment of zika virus disease in resource-limited settings. Niger Postgrad Med J. 2018;25(2):67–72.PubMedCrossRefGoogle Scholar
  52. 52.
    Muthusamy VS, Anand S, Sangeetha KN, Sujatha S, Arun B, Lakshmi BS. Tannins present in Cichoriumintybus enhance glucose uptake and inhibit adipogenesis in 3T3-L1 adipocytes through PTP1B inhibition. Chem Biol Interact. 2008;174(1):69–78.PubMedCrossRefGoogle Scholar
  53. 53.
    Lakshmi BS, Sujatha S, Anand S, Sangeetha KN, Narayanan RB, Katiyar C, et al. Cinnamic acid, from the bark of Cinnamomum cassia, regulates glucose transport via activation of GLUT4 on L6 myotubes in a phosphatidylinositol 3-kinase-independent manner. J Diabetes. 2009;1(2):99–106.PubMedCrossRefGoogle Scholar
  54. 54.
    Shilpa K, Sangeetha KN, Muthusamy VS, Sujatha S, Lakshmi BS. Probing key targets in insulin signaling and adipogenesis using a methanolic extract of Costuspictus and its bioactive molecule, methyl tetracosanoate. Biotechnol Lett. 2009;31(12):1837.PubMedCrossRefGoogle Scholar
  55. 55.
    Sangeetha KN, Sujatha S, Muthusamy VS, Anand S, Nithya N, Velmurugan D, et al. 3β-taraxerol of Mangiferaindica, a PI3K dependent dual activator of glucose transport and glycogen synthesis in 3T3-L1 adipocytes. Biochim Biophys Acta. 2010;1800(3):359–66.PubMedCrossRefGoogle Scholar
  56. 56.
    Muthusamy VS, Saravanababu C, Ramanathan M, Raja RB, Sudhagar S, Anand S, et al. Inhibition of protein tyrosine phosphatase 1B and regulation of insulin signalling markers by caffeoyl derivatives of chicory (Cichoriumintybus) salad leaves. Br J Nutr. 2010;104(6):813–23.PubMedCrossRefGoogle Scholar
  57. 57.
    Anand S, Muthusamy VS, Sujatha S, Sangeetha KN, Raja RB, Sudhagar S, et al. Aloe emodin glycosides stimulates glucose transport and glycogen storage through PI3K dependent mechanism in L6 myotubes and inhibits adipocyte differentiation in 3T3L1 adipocytes. FEBS Lett. 2010;584(14):3170–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Sathya S, Sudhagar S, Priya MV, Raja RB, Muthusamy VS, Devaraj SN, et al. 3β-Hydroxylup-20 (29)-ene-27, 28-dioic acid dimethyl ester, a novel natural product from Plumbagozeylanica inhibits the proliferation and migration of MDA-MB-231 cells. Chem Biol Interact. 2010;188(3):412–20.PubMedCrossRefGoogle Scholar
  59. 59.
    Baskaran SK, Goswami N, Selvaraj S, Muthusamy VS, Lakshmi BS. Molecular dynamics approach to probe the allosteric inhibition of PTP1B by chlorogenic and cichoric acid. J Chem Inf Model. 2012;52(8):2004–12.PubMedCrossRefGoogle Scholar
  60. 60.
    Sangeetha KN, Shilpa K, Kumari PJ, Lakshmi BS. Reversal of dexamethasone induced insulin resistance in 3T3L1 adipocytes by 3β-taraxerol of Mangiferaindica. Phytomedicine. 2013;20(3–4):213–20.PubMedCrossRefGoogle Scholar
  61. 61.
    Shilpa K, Dinesh T, Lakshmi BS. An in vitro model to probe the regulation of adipocyte differentiation under hyperglycemia. Diabetes Metab J. 2013;37(3):176–80.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Shilpa K, Dinesh T, Lakshmi BS. Response: an in vitro model to probe the regulation of adipocyte differentiation under hyperglycemia (Diabetes Metab J 2013;37:176–80). Diabetes Metab J. 2013;37(4):298–9.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Jayashree B, Bibin YS, Prabhu D, Shanthirani CS, Gokulakrishnan K, Lakshmi BS, et al. Increased circulatory levels of lipopolysaccharide (LPS) and zonulin signify novel biomarkers of proinflammation in patients with type 2 diabetes. Mol Cell Biochem. 2014;388(1–2):203–10.PubMedCrossRefGoogle Scholar
  64. 64.
    Posa JK, Selvaraj S, Sangeetha KN, Baskaran SK, Lakshmi BS. p53 mediates impaired insulin signaling in 3T3-L1 adipocytes during hyperinsulinemia. Cell Biol Int. 2014;38(7):818–24.PubMedCrossRefGoogle Scholar
  65. 65.
    Thiyagarajan G, Muthukumaran P, Sarath Kumar B, Muthusamy VS, Lakshmi BS. Selective inhibition of PTP 1B by vitalboside a from syzygiumcumini enhances insulin sensitivity and attenuates lipid accumulation via partial agonism to PPAR γ: in vitro and in Silico investigation. Chem Biol Drug Des. 2016;88(2):302–12.PubMedCrossRefGoogle Scholar
  66. 66.
    Sangeetha KN, Sujatha S, Muthusamy VS, Anand S, Shilpa K. Current trends in small molecule discovery targeting key cellular signaling events towards the combined management of diabetes and obesity. Bioinformation. 2017;13(12):394.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Muthukumaran P, Thiyagarajan G, Babu RA, Lakshmi BS. Raffinose from Costusspeciosus attenuates lipid synthesis through modulation of PPARs/SREBP1c and improves insulin sensitivity through PI3K/AKT. Chem Biol Interact. 2018;284:80–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Senthil V, Ramadevi S, Venkatakrishnan V, Giridharan P, Lakshmi BS, Vishwakarma RA, et al. Withanolide induces apoptosis in HL-60 leukemia cells via mitochondria mediated cytochrome c release and caspase activation. Chem Biol Interact. 2007;167(1):19–30.PubMedCrossRefGoogle Scholar
  69. 69.
    Sudhagar S, Sathya S, Anuradha R, Gokulapriya G, Geetharani Y, Lakshmi BS. Inhibition of epidermal growth factor receptor by ferulic acid and 4-vinylguaiacol in human breast cancer cells. Biotechnol Lett. 2018;40(2):257–62.PubMedCrossRefGoogle Scholar
  70. 70.
    Sudhagar S, Sathya S, Gokulapriya G, Lakshmi BS. AKT-p53 axis protect cancer cells from autophagic cell death during nutrition deprivation. Biochem Biophys Res Commun. 2016;471(4):396–401.PubMedCrossRefGoogle Scholar
  71. 71.
    Kennedy RK, Naik PR, Veena V, Lakshmi BS, Lakshmi P, Krishna R, Sakthivel N. 5-methyl phenazine-1-carboxylic acid: a novel bioactive metabolite by a rhizosphere soil bacterium that exhibits potent antimicrobial and anticancer activities. Chem Biol Interact. 2015;231:71–82.PubMedCrossRefGoogle Scholar
  72. 72.
    Sathya S, Sudhagar S, Lakshmi BS. Estrogen suppresses breast cancer proliferation through GPER/p38 MAPK axis during hypoxia. Mol Cell Endocrinol. 2015;417:200–10.PubMedCrossRefGoogle Scholar
  73. 73.
    Sangeetha KN, Lakshmi BS, Devaraj SN. Dexamethasone promotes hypertrophy of H9C2 cardiomyocytes through calcineurin B pathway, independent of NFAT activation. Mol Cell Biochem. 2016;411(1–2):241–52.PubMedCrossRefGoogle Scholar
  74. 74.
    Sathya S, Sudhagar S, Sarathkumar B, Lakshmi BS. EGFR inhibition by pentacyclic triterpenes exhibit cell cycle and growth arrest in breast cancer cells. Life Sci. 2014;95(1):53–62.PubMedCrossRefGoogle Scholar
  75. 75.
    Ramadevi Mani S, Lakshmi BS. G1 arrest and caspase-mediated apoptosis in HL-60 cells by dichloromethane extract of Centrosemapubescens. Am J Chin Med. 2010;38(06):1143–59.PubMedCrossRefGoogle Scholar
  76. 76.
    Sudhagar S, Sathya S, Pandian K, Lakshmi BS. Targeting and sensing cancer cells with ZnOnanoprobes in vitro. Biotechnol Lett. 2011;33(9):1891–6.PubMedCrossRefGoogle Scholar
  77. 77.
    Sudhagar S, Sathya S, Lakshmi BS. Rapid non-genomic signalling by 17β-oestradiol through c-Src involves mTOR-dependent expression of HIF-1α in breast cancer cells. Br J Cancer. 2011;105(7):953.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Gayathri B, Manjula N, Vinaykumar KS, Lakshmi BS, Balakrishnan A. Pure compound from Boswelliaserrata extract exhibits anti-inflammatory property in human PBMCs and mouse macrophages through inhibition of TNFα, IL-1β, NO and MAP kinases. Int Immunopharmacol. 2007;7(4):473–82.PubMedCrossRefGoogle Scholar
  79. 79.
    Subramanian K, Selvakkumar C, Vinaykumar KS, Goswami N, Meenakshisundaram S, Balakrishnan A, Lakshmi BS. Tackling multiple antibiotic resistance in enteropathogenic Escherichia coli (EPEC) clinical isolates: a diarylheptanoid from Alpiniaofficinarum shows promising antibacterial and immunomodulatory activity against EPEC and its lipopolysaccharide-induced inflammation. Int J Antimicrob Agents. 2009;33(3):244–50.PubMedCrossRefGoogle Scholar
  80. 80.
    Balakrishnan G, Janakarajan L, Balakrishnan A, Lakshmi BS. Molecular basis of the anti-inflammatory property exhibited by cyclo-penta nophenanthrenol isolated from Lippianodiflora. Immunol Investig. 2010;39(7):713–39.CrossRefGoogle Scholar
  81. 81.
  82. 82.
  83. 83.
  84. 84.
  85. 85.
  86. 86.
    Gawehn E, Hiss JA, Brown JB, Schneider G. Advancing drug discovery via GPU-based deep learning. Expert Opin Drug Discov. 2018;13(7):579–82.PubMedCrossRefGoogle Scholar
  87. 87.
    Jing Y, Bian Y, Hu Z, Wang L, Xie XQ. Deep learning for drug design: An artificial intelligence paradigm for drug discovery in the big data era. AAPS J. 2018;20(3):58.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Gawehn E, Hiss JA, Schneider G. Deep learning in drug discovery. Mol Inf. 2016;35(1):3–14.CrossRefGoogle Scholar
  89. 89.
    Korotcov A, Tkachenko V, Russo DP, Ekins S. Comparison of deep learning with multiple machine learning methods and metrics using diverse drug discovery data sets. Mol Pharm. 2017;14(12):4462–75.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Chen H, Engkvist O, Wang Y, Olivecrona M, Blaschke T. The rise of deep learning in drug discovery. Drug Discov Today. 2018;23(6):1241–50.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Baskin II, Winkler D, Tetko IV. A renaissance of neural networks in drug discovery. Expert Opin Drug Discovery. 2016;11(8):785–95.CrossRefGoogle Scholar
  92. 92.
    Lima AN, Philot EA, Trossini GH, Scott LP, Maltarollo VG, Honorio KM. Use of machine learning approaches for novel drug discovery. Expert Opin Drug Discov. 2016;11(3):225–39.PubMedCrossRefGoogle Scholar
  93. 93.
    Dobchev D, Karelson M. Have artificial neural networks met expectations in drug discovery as implemented in QSAR framework? Expert Opin Drug Discovery. 2016;11(7):627–39.CrossRefGoogle Scholar
  94. 94.
    Lavecchia A. Machine-learning approaches in drug discovery: methods and applications. Drug Discov Today. 2015;20(3):318–31.PubMedCrossRefGoogle Scholar
  95. 95.
    Patel J. Science of the science, drug discovery and artificial neural networks. Curr Drug Discov Technol. 2013;10(1):2–7.PubMedGoogle Scholar
  96. 96.
    Reutlinger M, Schneider G. Nonlinear dimensionality reduction and mapping of compound libraries for drug discovery. J Mol Graph Model. 2012;34:108–17.PubMedCrossRefGoogle Scholar
  97. 97.
    Hecht D, Fogel GB. A novel in silico approach to drug discovery via computational intelligence. J Chem Inf Model. 2009;49(4):1105–21.PubMedCrossRefGoogle Scholar
  98. 98.
    Pozzan A. Molecular descriptors and methods for ligand based virtual high throughput screening in drug discovery. Curr Pharm Des. 2006;12(17):2099–110.PubMedCrossRefGoogle Scholar
  99. 99.
    Scotti L, Ishiki H, Mendonca Junior FJ, da Silva MS, Scotti MT. Artificial neural network methods applied to drug discovery for neglected diseases. Comb Chem High Throughput Screen. 2015;18(8):819–29.PubMedCrossRefGoogle Scholar
  100. 100.
    Zernov VV, Balakin KV, Ivaschenko AA, Savchuk NP, Pletnev IV. Drug discovery using support vector machines. The case studies of drug-likeness, agrochemical-likeness, and enzyme inhibition predictions. J Chem Inf Comput Sci. 2003;43(6):2048–56.PubMedCrossRefGoogle Scholar
  101. 101.
    Gombar VK, Silver IS, Zhao Z. Role of ADME characteristics in drug discovery and their in silico evaluation: in silico screening of chemicals for their metabolic stability. Curr Top Med Chem. 2003;3(11):1205–25.PubMedCrossRefGoogle Scholar
  102. 102.
    Liu R, Sun H, So SS. Development of quantitative structure− property relationship models for early ADME evaluation in drug discovery. 2. Blood-brain barrier penetration. J Chem Inf Comput Sci. 2001;41(6):1623–32.PubMedCrossRefGoogle Scholar
  103. 103.
    Shi LM, Fan Y, Lee JK, Waltham M, Andrews DT, Scherf U, Paull KD, Weinstein JN. Mining and visualizing large anticancer drug discovery databases. J Chem Inf Comput Sci. 2000;40(2):367–79.PubMedCrossRefGoogle Scholar
  104. 104.
    Murphy PM. Viral anti-chemokines: from pathogenesis to drug discovery. J Clin Invest. 2000;105(11):1515–7.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Hsu JT, Wang HC, Chen GW, Shih SR. Antiviral drug discovery targeting to viral proteases. Curr Pharm Des. 2006;12(11):1301–14.PubMedCrossRefGoogle Scholar
  106. 106.
    Murgueitio MS, Bermudez M, Mortier J, Wolber G. In silico virtual screening approaches for anti-viral drug discovery. Drug Discov Today Technol. 2012;9(3):e219–25.PubMedCrossRefGoogle Scholar
  107. 107.
    Schinazi RF, Bassit L, Gavegnano C. HCV drug discovery aimed at viral eradication. J Viral Hepat. 2010;17(2):77–90.PubMedCrossRefGoogle Scholar
  108. 108.
    Dacheux L. Editorial [hot topic: the challenge of viral encephalitis: from etiological diagnosis to efficient antiviral drug discovery (Guest Editor: Laurent Dacheux)]. Infect Disord Drug Targets. 2011;11(3):205.PubMedCrossRefGoogle Scholar
  109. 109.
    De Clercq E. Human viral diseases: what is next for antiviral drug discovery? Curr Opin Virol. 2012;2(5):572–9.PubMedCrossRefGoogle Scholar
  110. 110.
    Hari Narayana Moorthy NS, Poongavanam V, Pratheepa V. Viral M2 ion channel protein: a promising target for anti-influenza drug discovery. Mini Rev Med Chem. 2014;14(10):819–30.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Badireddi Subathra Lakshmi
    • 1
    Email author
  • Mohan Latha Abillasha
    • 1
  • Pandjassarame Kangueane
    • 2
  1. 1.Department of BiotechnologyAnna UniversityChennaiIndia
  2. 2.Biomedical Informatics (P) LtdPuducherryIndia

Personalised recommendations